\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Exponential decay for the coupled Klein-Gordon-Schrödinger equations with locally distributed damping

* Research partially supported by the CNPq grant 300631/2003-0
** Research partially supported by CAPES

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • The following coupled damped Klein-Gordon-Schrödinger equations are considered

    $\begin{array}{l}i\psi t + \Delta \psi + i\alpha b(x){( - \Delta )^{\frac{1}{2}}}b(x)\psi = \phi \psi {\chi _\omega }\;{\rm{in}}\;\Omega \times (0,\infty ),(\alpha > 0)\\\phi tt - \Delta \phi + a(x)\phi t = {\left| \psi \right|^2}{\chi _\omega }\;{\rm{in}}\;\Omega \times (0,\infty ),\end{array}$

    where $Ω$ is a bounded domain of $\mathbb{R}^n$, $n = 2$, with smooth boundary $Γ$ and $ω$ is a neighbourhood of $\partial Ω$ satisfying the geometric control condition. Here $χ_{ω}$ represents the characteristic function of $ω$. Assuming that $a, b∈ W^{1,∞}(Ω)\cap C^∞(Ω)$ are nonnegative functions such that $a(x) ≥ a_0 >0$ in $ω$ and $b(x) ≥ b_{0} > 0$ in $ω$, the exponential decay rate is proved for every regular solution of the above system. Our result generalizes substantially the previous results given by Cavalcanti et. al in the reference [7].

    Mathematics Subject Classification: Primary: 35L70, 35B40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Example of a region where Conjecture 2 is satisfied.

    Figure 2.  Neighborhood $\hat{\omega}$ of $\overline{\Gamma(x^0)}$

  • [1] L. Aloui, Smoothing effect for regularized Schrödinger equation on bounded domains, Asymptot. Anal., 59 (2008), 179-193. 
    [2] L. Aloui, Smoothing effect for regularized Schrödinger equation on compact manifolds, Collect. Math., 59 (2008), 53-62. 
    [3] A. Bachelot, Probléme de Cauchy pour des systémes hyperboliques semi-linéares, Ann. Inst. H. Poincaré Anal. non Linéaire, 1 (1984), 453-478. 
    [4] J. B. Baillon and J. M. Chadam, The Cauchy problem for the coupled Klein-GordonSchr¨odinger equations, in Contemporary Developments in Continuum Mechanics and Partial Differential Equations, North Holland, Amsterdam, (1978), 37–44.
    [5] C. BanquetL. C. F. Ferreira and E. J. Villamizar-Roa, On existence and scattering theory for the Klein-Gordon-Schrödinger system in an infinite L2-norm setting, Ann. Mat. Pura Appl., 194 (2015), 781-804. 
    [6] P. Biler, Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212. 
    [7] V. BisogninM. M. CavalcantiV. N. Domingos Cavalcanti and J. Soriano, Uniform decay for the Klein-Gordon-Schrödinger equations with locally distributed damping, NoDEA, Nonlinear Differ. Equ. Appl., 15 (2008), 91-113. 
    [8] C. A. Bortot and M. M. Cavalcanti, Asymptotic stability for the damped Schrödinger equation on noncompact Riemannian manifolds and exterior domains, Comm. Partial Differential Equations, 39 (2014), 1791-1820. 
    [9] C. A. Bortot and W. J. Corrêa, Exponential stability for the defocusing semilinear Schrödinger equation with locally distributed damping on a bounded domain, Differential and Integral Equations, 31 (2018), 273-300. 
    [10] N. BurqP. Gérard and N. Tzvetkov, On nonlinear Schrödinger equations in exterior domains, [Equations de Schrödinger non linéaires dans des domaines extrieurs,], Annales de l'Institut Henri Poincaré. Analyse Non Linéaire, 21 (2004), 295-318. 
    [11] M. Cavalcanti and V. Domingos Cavalcanti, Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations, NoDEA, Nonlinear differ. equ. appl., 7 (2000), 285-307. 
    [12] M. M. CavalcantiV. N. Domingos CavalcantiJ. A. Soriano and F. Natali, Qualitative aspects for the cubic nonlinear Schrödinger equations with localized damping: exponential and polynomial stabilization, J. Differential Equations, 248 (2010), 2955-2971. 
    [13] J. CollianderJ. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems, Trans. Amer. Soc. Math., 360 (2008), 4619-4638. 
    [14] P. Counstantin and J. C. Saut, Local smoothing properties of dispersive equation, Journal of the American Mathematical Society, 1 (), 413-439. 
    [15] Z. Dai and P. Gao, Exponential attractor for dissipative Klein-Gordon-Schrödinger equations in R3, Chim. Ann. Math. Ser. A., 21 (2000), 241-250. 
    [16] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations Ⅰ, Bull. Sci. Engrg. Res. Lab. Waseda Univ., 69 (1975), 51-62. 
    [17] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon-Schrödinger equations Ⅱ, J. Math. Analysis Applic., 66 (1978), 358-378. 
    [18] I. Fukuda and M. Tsutsumi, On coupled Klein-Gordon Schrödinger equations Ⅲ-Higher order interaction, decay and blow-up, Math. Japonica, 24 (1979), 307-321. 
    [19] I. Fukuda and M. Tsutsumi, On the Yukawa-coupled Klein-Gordon-Schödinger equations in three space dimensions, Proc. Japan Acad., 51 (1975), 402-405. 
    [20] B. Guo and Y. Li, Attractor for dissipative Klein-Gordon-Schrödinger equations in $\bf{R}^3$, Journal of Differential Equations, 136 (1997), 356-377. 
    [21] B. Guo and Y. Li, Attractor for the dissipative generalized Klein-Gordon-Schrödinger equations, J. Partial Differ. Equations, 11 (1998), 260-272. 
    [22] B. Guo and Y. Li, Asymptotic smoothing effect of solutions to weakly dissipative Klein-Gordon-Schrödinger equations, J. Math. Anal. Appl., 282 (2003), 256-265. 
    [23] Y. Han, On the Cauchy problem for the coupled Klein-Gordon-Schrödinger system with rough data, Discret. Contin. Dyn. Syst., 12 (2005), 233-242. 
    [24] N. Hayashi, Global strong solutions of coupled Klein-Gordon-Schrödinger equations, Funkcialaj Ekvacioj, 29 (1986), 299-307. 
    [25] N. Hayashi and W. Von Wahl, On the global strong solutions of coupled Klein-Gordon-Schrödinger equations, J. Math. Soc. Japan, 39 (1987), 489-497. 
    [26] H. Lange and B. Wang, Regularity of the global attractor for the Klein-Gordon-Schrödinger equation, Math. Methods Appl. Sci., 22 (1999), 1535-1554. 
    [27] H. Lange and B. Wang, Attractors for the Klein-Gordon-Schrödinger equation, J. Math. Phys., 40 (1999), 2445-2457. 
    [28] Y. LiQ. ShiC. Wang and S. Wang, Well-posedness for the nonlinear Klein-Gordon-Schrödinger equations with heterointeractions, J. Math. Phys., 51 (2010), 032-102. 
    [29] J. L. Lions, Quelques Métodes de Résolution des Problémes Aux Limites Non Linéaires, Dunod, Paris, 1969.
    [30] J. L. Lions, Controlabilité exacte, perturbations et Stabilisation de systèmes distribués, Tome 1, Masson, Paris, 1988.
    [31] J. L. Lions-E. Magenes, Problèmes Aux Limites Non Homogènes et Applications, Dunod, Paris, 1968, Vol. 1.
    [32] C. Miao and G. Xu, Global solutions of the Klein-Gordon-Schrödinger system with rough data in ${\mathbb{R}^{2 + 1}}$, J. Differ. Equ., 227 (2006), 365-405. 
    [33] O. GoubetA. Hakim and A. Mostafa, Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Diff. Integal Equ., 16 (2003), 573-581. 
    [34] M. Ohta, Stability of Stationary States for the Coupled Klein-Gordon-Schrödinger Equations, Nonlinear Analysis, Theory, Methods and Appl., 27 (1996), 455-461. 
    [35] T. Ozawa and Y. Tsutsumi, Asymptotic behaviour of solutions for the coupled Klein-Gordon-Schrödinger equations, Adv. Stud. Pure Math., 23 (1994), 295-305. 
    [36] H. Pecher, Global solutions of the Klein-Gordon-Schrödinger system with rough data, Differ. Int. Equ., 17 (2004), 179-214. 
    [37] M. N. Poulou and N. M. Stavrakakis, Global attractor for a system of Klein-Gordon-Schrödinger type in all R, Nonlinear Anal., 74 (2011), 2548-2562. 
    [38] M. N. Poulou and N. M. Stavrakakis, Uniform decay for a local dissipative Klein-Gordon-Schrödinger type system, Electron. J. Differential Equations, (2012), No. 179. 16pp.
    [39] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions, J. Math. Sci. Univ. Tokyo, 10 (2003), 661-685. 
    [40] A. Shimomura, Scattering theory for the coupled Klein-Gordon-Schrödinger equations in two space dimensions. Ⅱ, Hokkaido Math. J., 34 (2005), 405-433. 
    [41] N. Tzirakis, The Cauchy problem for the Klein-Gordon-Schrödinger system in low dimensions below the energy space, Comm. Partial Differ. Equ., 30 (2005), 605-641. 
    [42] B. Wang, Classical global solutions for non-linear Klein-Gordon-Schrödinger equations, Math. Methods Appl. Sci., 20 (1997), 599-616. 
    [43] H. Yukawa, On the interaction of elementary particles Ⅰ, Proc. Physico-Math. Soc. Japan, 17 (1935), 48-57. 
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(2631) PDF downloads(323) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return