\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Order preservation for path-distribution dependent SDEs

  • * Corresponding author

    * Corresponding author
The third author is supported by NNSFC (11771326, 11431014).
Abstract Full Text(HTML) Related Papers Cited by
  • Sufficient and necessary conditions are presented for the order preservation of path-distribution dependent SDEs. Differently from the corresponding study of distribution independent SDEs, to investigate the necessity of order preservation for the present model we need to construct a family of probability spaces in terms of the ordered pair of initial distributions.

    Mathematics Subject Classification: Primary: 60H1075, 60G44.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. Bao and C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132. 
    [2] M.-F. Chen and F.-Y. Wang, On order-preservation and positive correlations for multidimensional diffusion processes, Prob. Theory. Relat. Fields, 95 (1993), 421-428. 
    [3] L. Gal'cuk and M. Davis, A note on a comparison theorem for equations with different diffusions, Stochastics, 6 (1982), 147-149. 
    [4] X. Huang, M. Röckner and F.-Y. Wang, Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs, preprint, arXiv: 1709.00556.
    [5] X. Huang and F.-Y. Wang, Order-preservation for multidimensional stochastic functional differential equations with jumps, J. Evol. Equat., 14 (2014), 445-460. 
    [6] N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619-633. 
    [7] T. KamaeU. Krengel and G. L. O'Brien, Stochastic inequalities on partially ordered spaces, Ann. Probab., 5 (1977), 899-912. 
    [8] X. Mao, A note on comparison theorems for stochastic differential equations with respect to semimartingales, Stochastics, 37 (1991), 49-59. 
    [9] G. L. O'Brien, A new comparison theorem for solution of stochastic differential equations, Stochastics, 3 (1980), 245-249. 
    [10] S. Peng and Z. Yang, Anticipated backward stochastic differential equations, Ann. Probab., 37 (2009), 877-902. 
    [11] S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116 (2006), 370-380. 
    [12] F.-Y. Wang, The stochastic order and critical phenomena for superprocesses, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 107-128. 
    [13] F.-Y. Wang, Distribution-dependent SDEs for Landau type equations, Stoch. Proc. Appl., 128 (2018), 595-621. 
    [14] J.-M. Wang, Stochastic comparison for Lévy-type processes, J. Theor. Probab., 26 (2013), 997-1019. 
    [15] Z. YangX. Mao and C. Yuan, Comparison theorem of one-dimensional stochastic hybrid systems, Systems Control Lett., 57 (2008), 56-63. 
    [16] X. Zhu, On the comparison theorem for multi-dimensional stochastic differential equations with jumps (in Chinese), Sci. Sin. Math., 42 (2012), 303-311. 
  • 加载中
SHARE

Article Metrics

HTML views(367) PDF downloads(239) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return