September  2018, 17(5): 2125-2133. doi: 10.3934/cpaa.2018100

Order preservation for path-distribution dependent SDEs

1. 

Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

2. 

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, China

3. 

Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, United Kingdom

* Corresponding author

Received  October 2017 Revised  January 2018 Published  April 2018

Fund Project: The third author is supported by NNSFC (11771326, 11431014).

Sufficient and necessary conditions are presented for the order preservation of path-distribution dependent SDEs. Differently from the corresponding study of distribution independent SDEs, to investigate the necessity of order preservation for the present model we need to construct a family of probability spaces in terms of the ordered pair of initial distributions.

Citation: Xing Huang, Chang Liu, Feng-Yu Wang. Order preservation for path-distribution dependent SDEs. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2125-2133. doi: 10.3934/cpaa.2018100
References:
[1]

J. Bao and C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.   Google Scholar

[2]

M.-F. Chen and F.-Y. Wang, On order-preservation and positive correlations for multidimensional diffusion processes, Prob. Theory. Relat. Fields, 95 (1993), 421-428.   Google Scholar

[3]

L. Gal'cuk and M. Davis, A note on a comparison theorem for equations with different diffusions, Stochastics, 6 (1982), 147-149.   Google Scholar

[4]

X. Huang, M. Röckner and F.-Y. Wang, Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs, preprint, arXiv: 1709.00556. Google Scholar

[5]

X. Huang and F.-Y. Wang, Order-preservation for multidimensional stochastic functional differential equations with jumps, J. Evol. Equat., 14 (2014), 445-460.   Google Scholar

[6]

N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619-633.   Google Scholar

[7]

T. KamaeU. Krengel and G. L. O'Brien, Stochastic inequalities on partially ordered spaces, Ann. Probab., 5 (1977), 899-912.   Google Scholar

[8]

X. Mao, A note on comparison theorems for stochastic differential equations with respect to semimartingales, Stochastics, 37 (1991), 49-59.   Google Scholar

[9]

G. L. O'Brien, A new comparison theorem for solution of stochastic differential equations, Stochastics, 3 (1980), 245-249.   Google Scholar

[10]

S. Peng and Z. Yang, Anticipated backward stochastic differential equations, Ann. Probab., 37 (2009), 877-902.   Google Scholar

[11]

S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116 (2006), 370-380.   Google Scholar

[12]

F.-Y. Wang, The stochastic order and critical phenomena for superprocesses, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 107-128.   Google Scholar

[13]

F.-Y. Wang, Distribution-dependent SDEs for Landau type equations, Stoch. Proc. Appl., 128 (2018), 595-621.   Google Scholar

[14]

J.-M. Wang, Stochastic comparison for Lévy-type processes, J. Theor. Probab., 26 (2013), 997-1019.   Google Scholar

[15]

Z. YangX. Mao and C. Yuan, Comparison theorem of one-dimensional stochastic hybrid systems, Systems Control Lett., 57 (2008), 56-63.   Google Scholar

[16]

X. Zhu, On the comparison theorem for multi-dimensional stochastic differential equations with jumps (in Chinese), Sci. Sin. Math., 42 (2012), 303-311.   Google Scholar

show all references

References:
[1]

J. Bao and C. Yuan, Comparison theorem for stochastic differential delay equations with jumps, Acta Appl. Math., 116 (2011), 119-132.   Google Scholar

[2]

M.-F. Chen and F.-Y. Wang, On order-preservation and positive correlations for multidimensional diffusion processes, Prob. Theory. Relat. Fields, 95 (1993), 421-428.   Google Scholar

[3]

L. Gal'cuk and M. Davis, A note on a comparison theorem for equations with different diffusions, Stochastics, 6 (1982), 147-149.   Google Scholar

[4]

X. Huang, M. Röckner and F.-Y. Wang, Nonlinear Fokker–Planck equations for probability measures on path space and path-distribution dependent SDEs, preprint, arXiv: 1709.00556. Google Scholar

[5]

X. Huang and F.-Y. Wang, Order-preservation for multidimensional stochastic functional differential equations with jumps, J. Evol. Equat., 14 (2014), 445-460.   Google Scholar

[6]

N. Ikeda and S. Watanabe, A comparison theorem for solutions of stochastic differential equations and its applications, Osaka J. Math., 14 (1977), 619-633.   Google Scholar

[7]

T. KamaeU. Krengel and G. L. O'Brien, Stochastic inequalities on partially ordered spaces, Ann. Probab., 5 (1977), 899-912.   Google Scholar

[8]

X. Mao, A note on comparison theorems for stochastic differential equations with respect to semimartingales, Stochastics, 37 (1991), 49-59.   Google Scholar

[9]

G. L. O'Brien, A new comparison theorem for solution of stochastic differential equations, Stochastics, 3 (1980), 245-249.   Google Scholar

[10]

S. Peng and Z. Yang, Anticipated backward stochastic differential equations, Ann. Probab., 37 (2009), 877-902.   Google Scholar

[11]

S. Peng and X. Zhu, Necessary and sufficient condition for comparison theorem of 1-dimensional stochastic differential equations, Stochastic Process. Appl., 116 (2006), 370-380.   Google Scholar

[12]

F.-Y. Wang, The stochastic order and critical phenomena for superprocesses, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 9 (2006), 107-128.   Google Scholar

[13]

F.-Y. Wang, Distribution-dependent SDEs for Landau type equations, Stoch. Proc. Appl., 128 (2018), 595-621.   Google Scholar

[14]

J.-M. Wang, Stochastic comparison for Lévy-type processes, J. Theor. Probab., 26 (2013), 997-1019.   Google Scholar

[15]

Z. YangX. Mao and C. Yuan, Comparison theorem of one-dimensional stochastic hybrid systems, Systems Control Lett., 57 (2008), 56-63.   Google Scholar

[16]

X. Zhu, On the comparison theorem for multi-dimensional stochastic differential equations with jumps (in Chinese), Sci. Sin. Math., 42 (2012), 303-311.   Google Scholar

[1]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[2]

Giulia Cavagnari, Antonio Marigonda. Attainability property for a probabilistic target in wasserstein spaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 777-812. doi: 10.3934/dcds.2020300

[3]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[4]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[5]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[10]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[11]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[12]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[13]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[16]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[17]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[18]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[19]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[20]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (103)
  • HTML views (178)
  • Cited by (1)

Other articles
by authors

[Back to Top]