September  2018, 17(5): 2139-2147. doi: 10.3934/cpaa.2018102

Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms

Laboratory of Mathematics, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan

* Corresponding author

Received  February 2017 Revised  June 2017 Published  April 2018

We consider the bifurcation problem
$-u''\left(t \right) = \lambda \left(u\left(t \right)+g\left(u\left(t \right) \right) \right),\;u\left(t \right)>0,\;\;t\in I: = \left(-1, 1 \right),\;\; u\left(\pm 1 \right) = 0, $
where
$g(u) ∈ C^1(\mathbb{R}) $
is a periodic function with period 2π and
$λ > 0$
is a bifurcation parameter. It is known that, under the appropriate conditions on $g$, $λ$ is parameterized by the maximum norm
$α = \Vert u_λ\Vert_∞$
of the solution
$u_λ$
associated with
$λ$
and is written as
$λ = λ(α)$
. If
$g(u)$
is periodic, then it is natural to expect that
$λ(α)$
is also oscillatory for
$α \gg 1$
. We give a simple condition of
$g(u)$
, by which we can easily check whether
$λ(α)$
is oscillatory and intersects the line
$λ = π^2/4$
infinitely many times for
$\alpha \gg 1$
or not.
Citation: Tetsutaro Shibata. Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2139-2147. doi: 10.3934/cpaa.2018102
References:
[1]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.   Google Scholar

[2]

S. Cano-Casanova and J. López-Gómez, Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line, J. Differential Equations, 244 (2008), 3180-3203.   Google Scholar

[3]

S. Cano-Casanova and J. López-Gómez, Blow-up rates of radially symmetric large solutions, J. Math. Anal. Appl., 352 (2009), 166-174.   Google Scholar

[4]

S. ChenJ. Shi and J. Wei, Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production, Appl. Anal., 93 (2014), 1115-1134.   Google Scholar

[5]

Y. J. Cheng, On an open problem of Ambrosetti, Brezis and Cerami, Differential Integral Equations, 15 (2002), 1025-1044.   Google Scholar

[6]

R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic operators with odd superlinear term, Nonlinear Anal., 13 (1989), 871-878.   Google Scholar

[7]

J. M. FraileJ. López-Gómez and J. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations, 123 (1995), 180-212.   Google Scholar

[8]

A. GalstianP. Korman and Y. Li, On the oscillations of the solution curve for a class of semilinear equations, J. Math. Anal. Appl., 321 (2006), 576-588.   Google Scholar

[9]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Translated from the Russian. Translation edited and with a preface by Daniel Zwillinger and Victor Moll. Eighth edition. Elsevier/Academic Press, Amsterdam, 2015. Google Scholar

[10]

P. Korman and Y. Li, Exact multiplicity of positive solutions for concave-convex and convex-concave nonlinearities, J. Differential Equations, 257 (2014), 3730-3737.   Google Scholar

[11]

P. Korman and Y. Li, Computing the location and the direction of bifurcation for sign changing solutions, Differ. Equ. Appl., 2 (2010), 1-13.   Google Scholar

[12]

P. Korman and Y. Li, Infinitely many solutions at a resonance, Electron. J. Differ. Equ. Conf. 05, 105–111. Google Scholar

[13]

P. Korman, An oscillatory bifurcation from infinity, and from zero, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 335-345.   Google Scholar

[14]

P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. Google Scholar

[15]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970/1971), 1-13.   Google Scholar

[16]

T. Shibata, New method for computing the local behavior of $L_q$-bifurcation curve for logistic equations, Int. J. Math. Anal., 7 (2013), 29-1541.   Google Scholar

[17]

T. Shibata, S-shaped bifurcation curves for nonlinear two-parameter problems, Nonlinear Anal., 95 (2014), 796-808.   Google Scholar

[18]

T. Shibata, Asymptotic length of bifurcation curves related to inverse bifurcation problems, J. Math. Anal. Appl., 438 (2016), 629-642.   Google Scholar

[19]

T. Shibata, Oscillatory bifurcation for semilinear ordinary differential equations, Electron. J. Qual. Theory Differ. Equ., 44 (2016), 1-13.   Google Scholar

show all references

References:
[1]

A. AmbrosettiH. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.   Google Scholar

[2]

S. Cano-Casanova and J. López-Gómez, Existence, uniqueness and blow-up rate of large solutions for a canonical class of one-dimensional problems on the half-line, J. Differential Equations, 244 (2008), 3180-3203.   Google Scholar

[3]

S. Cano-Casanova and J. López-Gómez, Blow-up rates of radially symmetric large solutions, J. Math. Anal. Appl., 352 (2009), 166-174.   Google Scholar

[4]

S. ChenJ. Shi and J. Wei, Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production, Appl. Anal., 93 (2014), 1115-1134.   Google Scholar

[5]

Y. J. Cheng, On an open problem of Ambrosetti, Brezis and Cerami, Differential Integral Equations, 15 (2002), 1025-1044.   Google Scholar

[6]

R. Chiappinelli, On spectral asymptotics and bifurcation for elliptic operators with odd superlinear term, Nonlinear Anal., 13 (1989), 871-878.   Google Scholar

[7]

J. M. FraileJ. López-Gómez and J. Sabina de Lis, On the global structure of the set of positive solutions of some semilinear elliptic boundary value problems, J. Differential Equations, 123 (1995), 180-212.   Google Scholar

[8]

A. GalstianP. Korman and Y. Li, On the oscillations of the solution curve for a class of semilinear equations, J. Math. Anal. Appl., 321 (2006), 576-588.   Google Scholar

[9]

I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products. Translated from the Russian. Translation edited and with a preface by Daniel Zwillinger and Victor Moll. Eighth edition. Elsevier/Academic Press, Amsterdam, 2015. Google Scholar

[10]

P. Korman and Y. Li, Exact multiplicity of positive solutions for concave-convex and convex-concave nonlinearities, J. Differential Equations, 257 (2014), 3730-3737.   Google Scholar

[11]

P. Korman and Y. Li, Computing the location and the direction of bifurcation for sign changing solutions, Differ. Equ. Appl., 2 (2010), 1-13.   Google Scholar

[12]

P. Korman and Y. Li, Infinitely many solutions at a resonance, Electron. J. Differ. Equ. Conf. 05, 105–111. Google Scholar

[13]

P. Korman, An oscillatory bifurcation from infinity, and from zero, NoDEA Nonlinear Differential Equations Appl., 15 (2008), 335-345.   Google Scholar

[14]

P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2012. Google Scholar

[15]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970/1971), 1-13.   Google Scholar

[16]

T. Shibata, New method for computing the local behavior of $L_q$-bifurcation curve for logistic equations, Int. J. Math. Anal., 7 (2013), 29-1541.   Google Scholar

[17]

T. Shibata, S-shaped bifurcation curves for nonlinear two-parameter problems, Nonlinear Anal., 95 (2014), 796-808.   Google Scholar

[18]

T. Shibata, Asymptotic length of bifurcation curves related to inverse bifurcation problems, J. Math. Anal. Appl., 438 (2016), 629-642.   Google Scholar

[19]

T. Shibata, Oscillatory bifurcation for semilinear ordinary differential equations, Electron. J. Qual. Theory Differ. Equ., 44 (2016), 1-13.   Google Scholar

Figure 1.  λ(g; α) with (OP)
Figure 2.  graph of sinx + $\epsilon\psi$(x)
[1]

Joseph H. Silverman. Local-global aspects of (hyper)elliptic curves over (in)finite fields. Advances in Mathematics of Communications, 2010, 4 (2) : 101-114. doi: 10.3934/amc.2010.4.101

[2]

Pengmiao Hao, Xuechen Wang, Junjie Wei. Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 973-993. doi: 10.3934/dcdss.2017051

[3]

Yukio Kan-On. Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 147-162. doi: 10.3934/dcds.2002.8.147

[4]

Gian-Italo Bischi, Laura Gardini, Fabio Tramontana. Bifurcation curves in discontinuous maps. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 249-267. doi: 10.3934/dcdsb.2010.13.249

[5]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241

[6]

Makoto Nakamura. Remarks on global solutions of dissipative wave equations with exponential nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1533-1545. doi: 10.3934/cpaa.2015.14.1533

[7]

Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287

[8]

Sami Aouaoui. On some local-nonlocal elliptic equation involving nonlinear terms with exponential growth. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1767-1784. doi: 10.3934/cpaa.2017086

[9]

Carlos Garca-Azpeitia, Jorge Ize. Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 975-983. doi: 10.3934/dcdss.2013.6.975

[10]

Yukio Kan-On. Bifurcation structures of positive stationary solutions for a Lotka-Volterra competition model with diffusion II: Global structure. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 135-148. doi: 10.3934/dcds.2006.14.135

[11]

Hideaki Takaichi, Izumi Takagi, Shoji Yotsutani. Global bifurcation structure on a shadow system with a source term - Representation of all solutions-. Conference Publications, 2011, 2011 (Special) : 1344-1350. doi: 10.3934/proc.2011.2011.1344

[12]

Boyan Jonov, Thomas C. Sideris. Global and almost global existence of small solutions to a dissipative wave equation in 3D with nearly null nonlinear terms. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1407-1442. doi: 10.3934/cpaa.2015.14.1407

[13]

Attila Dénes, Gergely Röst. Global stability for SIR and SIRS models with nonlinear incidence and removal terms via Dulac functions. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1101-1117. doi: 10.3934/dcdsb.2016.21.1101

[14]

M. L. Santos, Mirelson M. Freitas. Global attractors for a mixture problem in one dimensional solids with nonlinear damping and sources terms. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1869-1890. doi: 10.3934/cpaa.2019087

[15]

Alberto A. Pinto, João P. Almeida, Telmo Parreira. Local market structure in a Hotelling town. Journal of Dynamics & Games, 2016, 3 (1) : 75-100. doi: 10.3934/jdg.2016004

[16]

Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Structure and regularity of the global attractor of a reaction-diffusion equation with non-smooth nonlinear term. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4155-4182. doi: 10.3934/dcds.2014.34.4155

[17]

Peng Huang, Xiong Li, Bin Liu. Invariant curves of smooth quasi-periodic mappings. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 131-154. doi: 10.3934/dcds.2018006

[18]

Kuan-Ju Huang, Yi-Jung Lee, Tzung-Shin Yeh. Classification of bifurcation curves of positive solutions for a nonpositone problem with a quartic polynomial. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1497-1514. doi: 10.3934/cpaa.2016.15.1497

[19]

Yoshifumi Aimoto, Takayasu Matsuo, Yuto Miyatake. A local discontinuous Galerkin method based on variational structure. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 817-832. doi: 10.3934/dcdss.2015.8.817

[20]

Eric Todd Quinto, Hans Rullgård. Local singularity reconstruction from integrals over curves in $\mathbb{R}^3$. Inverse Problems & Imaging, 2013, 7 (2) : 585-609. doi: 10.3934/ipi.2013.7.585

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (60)
  • HTML views (151)
  • Cited by (0)

Other articles
by authors

[Back to Top]