• Previous Article
    Specified homogenization of a discrete traffic model leading to an effective junction condition
  • CPAA Home
  • This Issue
  • Next Article
    Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms
September  2018, 17(5): 2149-2171. doi: 10.3934/cpaa.2018103

Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps

1. 

Department of Mathematics and Physics, North China Electric Power University, Beijing, 102206, China

2. 

School of Applied Science, Beijing Information Science & Technology University, Beijing, 100192, China

* Corresponding author

Received  March 2017 Revised  January 2018 Published  April 2018

In this paper, we consider the existence and exactness of multiple positive solutions for the nonlinear boundary value problem
$\left\{ \begin{array}{l} - u''(x) = \lambda f(u),\;\;\;\;0 < x < 1,\\u(0) = 0,\\\frac{{u(1)}}{{u(1) + 1}}u'(1) + \left[ {1 - \frac{{u(1)}}{{u(1) + 1}}} \right]u(1) = 0,\end{array} \right.$
where
$λ>0$
is a bifurcation parameter,
$f(u)>0$
for
$u>0$
. We give complete descriptions of the structure of bifurcation curves and determine the existence and multiplicity of positive solutions of the above problem for
$f(u) = e^{u},\ f(u) = a^{u}(a>0),\ f(u) = u^{p}(p>0),\ f(u) = e^{u}-1,\ f(u) = a^{u}-1(a>1)$
and
$f(u) = (1+u)^{p}(p>0)$
. Our methods are based on a detailed analysis of time maps.
Citation: Xuemei Zhang, Meiqiang Feng. Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2149-2171. doi: 10.3934/cpaa.2018103
References:
[1]

I. Addou and S.-H. Wang, Exact multiplicity results for a $p$-Laplacian problem with concave-convex-concave nonlinearities, Nonlinear Anal., 53 (2003), 111-137.   Google Scholar

[2]

N. Brubaker and J. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal., 75 (2012), 5086-5102.   Google Scholar

[3]

A. Castro and R. Shivaji, Non-negative solutions for a class of non-positone problems, Proc. Roy. Soc. Edinburgh Sec. A, 108 (1988), 291-302.   Google Scholar

[4]

J. Cheng, Exact number of positive solutions for a class of semipositone problems, J. Math. Anal. Appl., 280 (2003), 197-208.   Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.   Google Scholar

[6]

J. Goddard IIE. K. Lee and R. Shivaji, A double $S$-shaped bifurcation curve for a reaction-diffusion model with nonlinear boundary conditions, Bound. Value. Probl., 2010 (2010), 357542.   Google Scholar

[7]

K.-C. HungY.-H. ChengS.-H. Wang and C.-H. Chuang, Exact multiplicity and bifurcation diagrams of positive solutions of a one-dimensional multiparameter prescribed mean curvature problem, J. Differential Equations, 257 (2014), 3272-3299.   Google Scholar

[8]

K.-C. Hung and S.-H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations, 251 (2011), 223-237.   Google Scholar

[9]

S.-Y. Huang and S.-H. Wang, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Ration. Mech. An., 222 (2016), 769-825.   Google Scholar

[10]

K.-C. HungS.-H. Wang and C.-H. Yu, Existence of a double $S$-shaped bifurcation curve with six positive solutions for a combustion problem, J. Math. Anal. Appl., 392 (2012), 40-54.   Google Scholar

[11]

D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive source, Arch. Rational Mech. Anal., 49 (1973), 241-269.   Google Scholar

[12]

P. Korman, Uniqueness and exact multiplicity of solutions for a class of Dirichlet problems, J. Differential Equations, 244 (2008), 2602-2613.   Google Scholar

[13]

P. Korman and Y. Li, On the exactness of an $S$-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999), 1011-1020.   Google Scholar

[14]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1-13.   Google Scholar

[15]

Y.-H. Liang and S.-H. Wang, Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions, J. Differential Equations, 260 (2016), 8358-8387.   Google Scholar

[16]

Y.-H. Liang and S.-H. Wang, Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions Ⅱ, Electron. J. Differential Equations, 61 (2017), 1-12.   Google Scholar

[17]

J. Liouville, Sur léquation aux différences partielles $\frac{d^2\logλ}{dudv}± \frac{λ}{2a^2}=0$, J. Math. Pures Appl., 18 (1853), 71-72.   Google Scholar

[18]

Z. Liu and X. Zhang, A class of two-point boundary value problems, J. Math. Anal. Appl., 254 (2001), 599-617.   Google Scholar

[19]

H. Pan and R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to MEMS models, Nonlinear Anal. Real World Appl., 13 (2012), 2432-2445.   Google Scholar

[20]

H. Pan and R. Xing, On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS model, Discret. Contin. Dyn. Syst., 35 (2015), 3627-3682.   Google Scholar

[21]

J. Shi and R. Shivaji, Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity, Discret Contin. Dyn. Syst., 7 (2001), 559-571.   Google Scholar

[22]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.   Google Scholar

[23]

S.-H. Wang and T.-S. Yeh, Exact multiplicity and ordering properties of positive solutions of a $p$-Laplacian Dirichlet problem and their applications, J. Math. Anal. Appl., 287 (2003), 380-398.   Google Scholar

[24]

X. Zhang and M. Feng, Exact number of solutions of a one-dimensional prescribed mean curvature equation with concave-convex nonlinearities, J. Math. Anal. Appl., 395 (2012), 393-402.   Google Scholar

show all references

References:
[1]

I. Addou and S.-H. Wang, Exact multiplicity results for a $p$-Laplacian problem with concave-convex-concave nonlinearities, Nonlinear Anal., 53 (2003), 111-137.   Google Scholar

[2]

N. Brubaker and J. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal., 75 (2012), 5086-5102.   Google Scholar

[3]

A. Castro and R. Shivaji, Non-negative solutions for a class of non-positone problems, Proc. Roy. Soc. Edinburgh Sec. A, 108 (1988), 291-302.   Google Scholar

[4]

J. Cheng, Exact number of positive solutions for a class of semipositone problems, J. Math. Anal. Appl., 280 (2003), 197-208.   Google Scholar

[5]

M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180.   Google Scholar

[6]

J. Goddard IIE. K. Lee and R. Shivaji, A double $S$-shaped bifurcation curve for a reaction-diffusion model with nonlinear boundary conditions, Bound. Value. Probl., 2010 (2010), 357542.   Google Scholar

[7]

K.-C. HungY.-H. ChengS.-H. Wang and C.-H. Chuang, Exact multiplicity and bifurcation diagrams of positive solutions of a one-dimensional multiparameter prescribed mean curvature problem, J. Differential Equations, 257 (2014), 3272-3299.   Google Scholar

[8]

K.-C. Hung and S.-H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations, 251 (2011), 223-237.   Google Scholar

[9]

S.-Y. Huang and S.-H. Wang, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Ration. Mech. An., 222 (2016), 769-825.   Google Scholar

[10]

K.-C. HungS.-H. Wang and C.-H. Yu, Existence of a double $S$-shaped bifurcation curve with six positive solutions for a combustion problem, J. Math. Anal. Appl., 392 (2012), 40-54.   Google Scholar

[11]

D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive source, Arch. Rational Mech. Anal., 49 (1973), 241-269.   Google Scholar

[12]

P. Korman, Uniqueness and exact multiplicity of solutions for a class of Dirichlet problems, J. Differential Equations, 244 (2008), 2602-2613.   Google Scholar

[13]

P. Korman and Y. Li, On the exactness of an $S$-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999), 1011-1020.   Google Scholar

[14]

T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1-13.   Google Scholar

[15]

Y.-H. Liang and S.-H. Wang, Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions, J. Differential Equations, 260 (2016), 8358-8387.   Google Scholar

[16]

Y.-H. Liang and S.-H. Wang, Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions Ⅱ, Electron. J. Differential Equations, 61 (2017), 1-12.   Google Scholar

[17]

J. Liouville, Sur léquation aux différences partielles $\frac{d^2\logλ}{dudv}± \frac{λ}{2a^2}=0$, J. Math. Pures Appl., 18 (1853), 71-72.   Google Scholar

[18]

Z. Liu and X. Zhang, A class of two-point boundary value problems, J. Math. Anal. Appl., 254 (2001), 599-617.   Google Scholar

[19]

H. Pan and R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to MEMS models, Nonlinear Anal. Real World Appl., 13 (2012), 2432-2445.   Google Scholar

[20]

H. Pan and R. Xing, On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS model, Discret. Contin. Dyn. Syst., 35 (2015), 3627-3682.   Google Scholar

[21]

J. Shi and R. Shivaji, Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity, Discret Contin. Dyn. Syst., 7 (2001), 559-571.   Google Scholar

[22]

J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290.   Google Scholar

[23]

S.-H. Wang and T.-S. Yeh, Exact multiplicity and ordering properties of positive solutions of a $p$-Laplacian Dirichlet problem and their applications, J. Math. Anal. Appl., 287 (2003), 380-398.   Google Scholar

[24]

X. Zhang and M. Feng, Exact number of solutions of a one-dimensional prescribed mean curvature equation with concave-convex nonlinearities, J. Math. Anal. Appl., 395 (2012), 393-402.   Google Scholar

Figure 1.  Reversed $S$-shaped curve
Figure 2.  Broken reversed $S$-shaped curve
Figure 3.  Exactly $S$-shaped bifurcation curve $S$ of $(1.6)$
Figure 6.  Bifurcation diagram of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = e^{u}$
Figure 8.  Bifurcation diagrams of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = a^{u}$
Figure 10.  Bifurcation diagrams of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = u^p$
Figure 12.  Bifurcation diagram of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = e^{u}-1$
Figure 14.  Bifurcation diagram of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = (1+u)^p(p>1)$
Figure 16.  Bifurcation diagrams of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = (1+u)^p(p\leq 1)$
Figure 4.  Graph of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = e^{u}$
Figure 5.  Graphs of $G(\lambda,\rho)$ and $H(\lambda,\rho)$ for $\lambda_{0},\lambda_{1},\lambda_{2}$ in the case $f(u) = e^{u}$
Figure 7.  Graphs of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = a^{u}$
Figure 9.  Graphs of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = u^p$
Figure 11.  Graph of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = e^{u}-1$
Figure 13.  Graphs of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = (1+u)^p(p>0)$
Figure 15.  Graphs of $\widetilde{H}(\rho,0).$
[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[3]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[4]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[5]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[6]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[9]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020294

[10]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[11]

Roland Schnaubelt, Martin Spitz. Local wellposedness of quasilinear Maxwell equations with absorbing boundary conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 155-198. doi: 10.3934/eect.2020061

[12]

Kuntal Bhandari, Franck Boyer. Boundary null-controllability of coupled parabolic systems with Robin conditions. Evolution Equations & Control Theory, 2021, 10 (1) : 61-102. doi: 10.3934/eect.2020052

[13]

Qianqian Hou, Tai-Chia Lin, Zhi-An Wang. On a singularly perturbed semi-linear problem with Robin boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 401-414. doi: 10.3934/dcdsb.2020083

[14]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[15]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[16]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[17]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[18]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[19]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[20]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (83)
  • HTML views (168)
  • Cited by (3)

Other articles
by authors

[Back to Top]