Article Contents
Article Contents

# Double bifurcation diagrams and four positive solutions of nonlinear boundary value problems via time maps

• * Corresponding author
• In this paper, we consider the existence and exactness of multiple positive solutions for the nonlinear boundary value problem

$\left\{ \begin{array}{l} - u''(x) = \lambda f(u),\;\;\;\;0 < x < 1,\\u(0) = 0,\\\frac{{u(1)}}{{u(1) + 1}}u'(1) + \left[ {1 - \frac{{u(1)}}{{u(1) + 1}}} \right]u(1) = 0,\end{array} \right.$

where $λ>0$ is a bifurcation parameter, $f(u)>0$ for $u>0$. We give complete descriptions of the structure of bifurcation curves and determine the existence and multiplicity of positive solutions of the above problem for $f(u) = e^{u},\ f(u) = a^{u}(a>0),\ f(u) = u^{p}(p>0),\ f(u) = e^{u}-1,\ f(u) = a^{u}-1(a>1)$ and $f(u) = (1+u)^{p}(p>0)$. Our methods are based on a detailed analysis of time maps.

Mathematics Subject Classification: 34B18, 74G35.

 Citation:

• Figure 1.  Reversed $S$-shaped curve

Figure 2.  Broken reversed $S$-shaped curve

Figure 3.  Exactly $S$-shaped bifurcation curve $S$ of $(1.6)$

Figure 6.  Bifurcation diagram of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = e^{u}$

Figure 8.  Bifurcation diagrams of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = a^{u}$

Figure 10.  Bifurcation diagrams of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = u^p$

Figure 12.  Bifurcation diagram of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = e^{u}-1$

Figure 14.  Bifurcation diagram of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = (1+u)^p(p>1)$

Figure 16.  Bifurcation diagrams of $C = S\bigcup\widetilde{S}$ of (1.1) in the case $f(u) = (1+u)^p(p\leq 1)$

Figure 4.  Graph of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = e^{u}$

Figure 5.  Graphs of $G(\lambda,\rho)$ and $H(\lambda,\rho)$ for $\lambda_{0},\lambda_{1},\lambda_{2}$ in the case $f(u) = e^{u}$

Figure 7.  Graphs of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = a^{u}$

Figure 9.  Graphs of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = u^p$

Figure 11.  Graph of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = e^{u}-1$

Figure 13.  Graphs of $G(\lambda,\rho)$ for fixed $\lambda$ in the case $f(u) = (1+u)^p(p>0)$

Figure 15.  Graphs of $\widetilde{H}(\rho,0).$

•  [1] I. Addou and S.-H. Wang, Exact multiplicity results for a $p$-Laplacian problem with concave-convex-concave nonlinearities, Nonlinear Anal., 53 (2003), 111-137. [2] N. Brubaker and J. Pelesko, Analysis of a one-dimensional prescribed mean curvature equation with singular nonlinearity, Nonlinear Anal., 75 (2012), 5086-5102. [3] A. Castro and R. Shivaji, Non-negative solutions for a class of non-positone problems, Proc. Roy. Soc. Edinburgh Sec. A, 108 (1988), 291-302. [4] J. Cheng, Exact number of positive solutions for a class of semipositone problems, J. Math. Anal. Appl., 280 (2003), 197-208. [5] M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues, and linearized stability, Arch. Rational Mech. Anal., 52 (1973), 161-180. [6] J. Goddard II, E. K. Lee and R. Shivaji, A double $S$-shaped bifurcation curve for a reaction-diffusion model with nonlinear boundary conditions, Bound. Value. Probl., 2010 (2010), 357542. [7] K.-C. Hung, Y.-H. Cheng, S.-H. Wang and C.-H. Chuang, Exact multiplicity and bifurcation diagrams of positive solutions of a one-dimensional multiparameter prescribed mean curvature problem, J. Differential Equations, 257 (2014), 3272-3299. [8] K.-C. Hung and S.-H. Wang, A theorem on S-shaped bifurcation curve for a positone problem with convex-concave nonlinearity and its applications to the perturbed Gelfand problem, J. Differential Equations, 251 (2011), 223-237. [9] S.-Y. Huang and S.-H. Wang, Proof of a conjecture for the one-dimensional perturbed Gelfand problem from combustion theory, Arch. Ration. Mech. An., 222 (2016), 769-825. [10] K.-C. Hung, S.-H. Wang and C.-H. Yu, Existence of a double $S$-shaped bifurcation curve with six positive solutions for a combustion problem, J. Math. Anal. Appl., 392 (2012), 40-54. [11] D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive source, Arch. Rational Mech. Anal., 49 (1973), 241-269. [12] P. Korman, Uniqueness and exact multiplicity of solutions for a class of Dirichlet problems, J. Differential Equations, 244 (2008), 2602-2613. [13] P. Korman and Y. Li, On the exactness of an $S$-shaped bifurcation curve, Proc. Amer. Math. Soc., 127 (1999), 1011-1020. [14] T. Laetsch, The number of solutions of a nonlinear two point boundary value problem, Indiana Univ. Math. J., 20 (1970), 1-13. [15] Y.-H. Liang and S.-H. Wang, Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions, J. Differential Equations, 260 (2016), 8358-8387. [16] Y.-H. Liang and S.-H. Wang, Classification and evolution of bifurcation curves for the one-dimensional perturbed Gelfand equation with mixed boundary conditions Ⅱ, Electron. J. Differential Equations, 61 (2017), 1-12. [17] J. Liouville, Sur léquation aux différences partielles $\frac{d^2\logλ}{dudv}± \frac{λ}{2a^2}=0$, J. Math. Pures Appl., 18 (1853), 71-72. [18] Z. Liu and X. Zhang, A class of two-point boundary value problems, J. Math. Anal. Appl., 254 (2001), 599-617. [19] H. Pan and R. Xing, Exact multiplicity results for a one-dimensional prescribed mean curvature problem related to MEMS models, Nonlinear Anal. Real World Appl., 13 (2012), 2432-2445. [20] H. Pan and R. Xing, On the existence of positive solutions for some nonlinear boundary value problems and applications to MEMS model, Discret. Contin. Dyn. Syst., 35 (2015), 3627-3682. [21] J. Shi and R. Shivaji, Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity, Discret Contin. Dyn. Syst., 7 (2001), 559-571. [22] J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations, 39 (1981), 269-290. [23] S.-H. Wang and T.-S. Yeh, Exact multiplicity and ordering properties of positive solutions of a $p$-Laplacian Dirichlet problem and their applications, J. Math. Anal. Appl., 287 (2003), 380-398. [24] X. Zhang and M. Feng, Exact number of solutions of a one-dimensional prescribed mean curvature equation with concave-convex nonlinearities, J. Math. Anal. Appl., 395 (2012), 393-402.

Figures(16)