September  2018, 17(5): 2173-2206. doi: 10.3934/cpaa.2018104

Specified homogenization of a discrete traffic model leading to an effective junction condition

Normandie Univ, INSA de Rouen, LMI (EA 3226 - FR CNRS 3335), 76000 Rouen, France, 685 Avenue de l'Université, 76801 St Etienne du Rouvray cedex

* Corresponding author

Received  June 2017 Revised  January 2018 Published  April 2018

In this paper, we focus on deriving traffic flow macroscopic models from microscopic models containing a local perturbation such as a traffic light. At the microscopic scale, we consider a first order model of the form "follow the leader" i.e. the velocity of each vehicle depends on the distance to the vehicle in front of it. We consider a local perturbation located at the origin that slows down the vehicles. At the macroscopic scale, we obtain an explicit Hamilton-Jacobi equation left and right of the origin and a junction condition at the origin (in the sense of [25]) which keeps the memory of the local perturbation. As it turns out, the macroscopic model is equivalent to a LWR model, with a flux limiting condition at the junction. Finally, we also present qualitative properties concerning the flux limiter at the junction.

Citation: Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104
References:
[1]

Y. Achdou and N. Tchou, Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction, Communications in Partial Differential Equations, 40 (2015), 652-693.   Google Scholar

[2]

Y. AchdouF. CamilliA. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 413-445.   Google Scholar

[3]

Y. AchdouS. Oudet and N. Tchou, Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1091-1121.   Google Scholar

[4]

O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 13 (1996), 293-317.   Google Scholar

[5]

A. AwA. KlarM. Rascle and T. Materne, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.   Google Scholar

[6]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $R^N$, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 710-739.   Google Scholar

[7]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $R^N$, SIAM Journal on Control and Optimization, 52 (2014), 1712-1744.   Google Scholar

[8]

G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems, preprint, arXiv: math/1611.01977. Google Scholar

[9]

M. Batista and E. Twrdy, Optimal velocity functions for car-following models, Journal of Zhejiang University-SCIENCE A, 11 (2010), 520-529.   Google Scholar

[10]

F. CamilliC. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equations on networks, Journal of Differential Equations, 254 (2013), 4122-4143.   Google Scholar

[11]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, preprint, arXiv: math/1505.01372, Google Scholar

[12]

M. Di Francesco and M.D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for rational mechanics and analysis, 217 (2015), 831-871.   Google Scholar

[13]

C. Edie, Car-following and steady-state theory for noncongested traffic, Operations Research, 9 (1961), 66-76.   Google Scholar

[14]

L. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 111 (1989), 359-375.   Google Scholar

[15]

N. ForcadelC. Imbert and R. Monneau, Homogenization of fully overdamped Frenkel-Kontorova models, Journal of Differential Equations, 246 (2009), 1057-1097.   Google Scholar

[16]

N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, 28 (2015), 1039-1068.   Google Scholar

[17]

N. ForcadelC. Imbert and R. Monneau, Homogenization of accelerated Frenkel-Kontorova models with n types of particles, Transactions of the American Mathematical Society, 364 (2012), 6187-6227.   Google Scholar

[18]

N. ForcadelC. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete and Continuous Dynamical Systems-Series A, 23 (2009), 785-826.   Google Scholar

[19]

N. ForcadelW. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic flow, Discrete and Continuous Dynamical Systems-Series A, 37 (2017), 1437-1487.   Google Scholar

[20]

G. GaliseC. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Analysis & PDE, 8 (2015), 1891-1929.   Google Scholar

[21]

BD Greenshields, Ws Channing, Hh. Miller and others, A study of traffic capacity, in Highway research board proceedings, (1935). Google Scholar

[22]

D. HelbingA. HenneckeV. Shvetsov and M. Treiber, Micro-and macro-simulation of freeway traffic, Mathematical and Computer Modelling, 35 (2002), 517-547.   Google Scholar

[23]

C. Imbert, A non-local regularization of first order Hamilton-Jacobi equations, Journal of Differential Equations, 211 (2005), 218-246.   Google Scholar

[24]

C. Imbert and R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case, Discrete and Continuous Dynamical Systems-Series A, 37 (2014), 6405-6435.   Google Scholar

[25]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Annales Scientifiques de l'ENS, 50 (2017), 357-448.   Google Scholar

[26]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 129-166.   Google Scholar

[27]

C. ImbertR. Monneau and E. Rouy, Homogenization of first order equations with (u/${\varepsilon}$)-periodic hamiltonians part ii: Application to dislocations dynamics, Communications in Partial Differential Equations, 33 (2008), 479-516.   Google Scholar

[28]

J. P. Lebacque and M. M. Khoshyaran, Modelling vehicular traffic flow on networks using macroscopic models, Finite Volumes for Complex Applications Ⅱ, (1999), 551-558.   Google Scholar

[29]

H. K. Lee, H. W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Physical Review E, 64 (2001), 056126. Google Scholar

[30]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229 (1955), 317-345.   Google Scholar

[31]

P. L. Lions, Lectures at Collège de France, (2015-2016). Google Scholar

[32]

P. L. Lions, Lectures at Collège de France, (2013-2014). Google Scholar

[33]

P. L. Lions and P. E. Souganidis, Viscosity solutions for junctions: well posedness and stability, Rendiconti Lincei-Matematica e Applicazioni, 27 (2016), 535-545.   Google Scholar

[34]

G. F. Newell, Nonlinear effects in the dynamics of car following, Operations research, 9 (1961), 209-229.   Google Scholar

[35]

H. J. Payne, Models of freeway traffic and control, Mathematical Models of Public Systems, (1971). Google Scholar

[36]

P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.   Google Scholar

[37]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete & Continuous Dynamical Systems-Series S, 7 (2014). Google Scholar

[38]

W. Salazar, Numerical specified homogenization of a discrete model with a local perturbation and application to traffic flow, (2016). Google Scholar

[39]

D. Slepčev, Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 79-115.   Google Scholar

show all references

References:
[1]

Y. Achdou and N. Tchou, Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction, Communications in Partial Differential Equations, 40 (2015), 652-693.   Google Scholar

[2]

Y. AchdouF. CamilliA. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 413-445.   Google Scholar

[3]

Y. AchdouS. Oudet and N. Tchou, Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1091-1121.   Google Scholar

[4]

O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 13 (1996), 293-317.   Google Scholar

[5]

A. AwA. KlarM. Rascle and T. Materne, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.   Google Scholar

[6]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $R^N$, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 710-739.   Google Scholar

[7]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $R^N$, SIAM Journal on Control and Optimization, 52 (2014), 1712-1744.   Google Scholar

[8]

G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems, preprint, arXiv: math/1611.01977. Google Scholar

[9]

M. Batista and E. Twrdy, Optimal velocity functions for car-following models, Journal of Zhejiang University-SCIENCE A, 11 (2010), 520-529.   Google Scholar

[10]

F. CamilliC. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equations on networks, Journal of Differential Equations, 254 (2013), 4122-4143.   Google Scholar

[11]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, preprint, arXiv: math/1505.01372, Google Scholar

[12]

M. Di Francesco and M.D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for rational mechanics and analysis, 217 (2015), 831-871.   Google Scholar

[13]

C. Edie, Car-following and steady-state theory for noncongested traffic, Operations Research, 9 (1961), 66-76.   Google Scholar

[14]

L. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 111 (1989), 359-375.   Google Scholar

[15]

N. ForcadelC. Imbert and R. Monneau, Homogenization of fully overdamped Frenkel-Kontorova models, Journal of Differential Equations, 246 (2009), 1057-1097.   Google Scholar

[16]

N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, 28 (2015), 1039-1068.   Google Scholar

[17]

N. ForcadelC. Imbert and R. Monneau, Homogenization of accelerated Frenkel-Kontorova models with n types of particles, Transactions of the American Mathematical Society, 364 (2012), 6187-6227.   Google Scholar

[18]

N. ForcadelC. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete and Continuous Dynamical Systems-Series A, 23 (2009), 785-826.   Google Scholar

[19]

N. ForcadelW. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic flow, Discrete and Continuous Dynamical Systems-Series A, 37 (2017), 1437-1487.   Google Scholar

[20]

G. GaliseC. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Analysis & PDE, 8 (2015), 1891-1929.   Google Scholar

[21]

BD Greenshields, Ws Channing, Hh. Miller and others, A study of traffic capacity, in Highway research board proceedings, (1935). Google Scholar

[22]

D. HelbingA. HenneckeV. Shvetsov and M. Treiber, Micro-and macro-simulation of freeway traffic, Mathematical and Computer Modelling, 35 (2002), 517-547.   Google Scholar

[23]

C. Imbert, A non-local regularization of first order Hamilton-Jacobi equations, Journal of Differential Equations, 211 (2005), 218-246.   Google Scholar

[24]

C. Imbert and R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case, Discrete and Continuous Dynamical Systems-Series A, 37 (2014), 6405-6435.   Google Scholar

[25]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Annales Scientifiques de l'ENS, 50 (2017), 357-448.   Google Scholar

[26]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 129-166.   Google Scholar

[27]

C. ImbertR. Monneau and E. Rouy, Homogenization of first order equations with (u/${\varepsilon}$)-periodic hamiltonians part ii: Application to dislocations dynamics, Communications in Partial Differential Equations, 33 (2008), 479-516.   Google Scholar

[28]

J. P. Lebacque and M. M. Khoshyaran, Modelling vehicular traffic flow on networks using macroscopic models, Finite Volumes for Complex Applications Ⅱ, (1999), 551-558.   Google Scholar

[29]

H. K. Lee, H. W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Physical Review E, 64 (2001), 056126. Google Scholar

[30]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229 (1955), 317-345.   Google Scholar

[31]

P. L. Lions, Lectures at Collège de France, (2015-2016). Google Scholar

[32]

P. L. Lions, Lectures at Collège de France, (2013-2014). Google Scholar

[33]

P. L. Lions and P. E. Souganidis, Viscosity solutions for junctions: well posedness and stability, Rendiconti Lincei-Matematica e Applicazioni, 27 (2016), 535-545.   Google Scholar

[34]

G. F. Newell, Nonlinear effects in the dynamics of car following, Operations research, 9 (1961), 209-229.   Google Scholar

[35]

H. J. Payne, Models of freeway traffic and control, Mathematical Models of Public Systems, (1971). Google Scholar

[36]

P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.   Google Scholar

[37]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete & Continuous Dynamical Systems-Series S, 7 (2014). Google Scholar

[38]

W. Salazar, Numerical specified homogenization of a discrete model with a local perturbation and application to traffic flow, (2016). Google Scholar

[39]

D. Slepčev, Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 79-115.   Google Scholar

Figure 1.  Schematic representation of the microscopic model
Figure 2.  Schematic representation of the macroscopic model
Figure 3.  Schematic representation of the optimal velocity function $V$
Figure 4.  Schematic representation of $\bar{H}$
Figure 5.  Schematic representation of the function $\rho$
Figure 6.  Schematic representation of the function $\rho$
[1]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[4]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[5]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[6]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[7]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[8]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[9]

Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020460

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[12]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[15]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[16]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[17]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[18]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (93)
  • HTML views (180)
  • Cited by (2)

[Back to Top]