September  2018, 17(5): 2173-2206. doi: 10.3934/cpaa.2018104

Specified homogenization of a discrete traffic model leading to an effective junction condition

Normandie Univ, INSA de Rouen, LMI (EA 3226 - FR CNRS 3335), 76000 Rouen, France, 685 Avenue de l'Université, 76801 St Etienne du Rouvray cedex

* Corresponding author

Received  June 2017 Revised  January 2018 Published  April 2018

In this paper, we focus on deriving traffic flow macroscopic models from microscopic models containing a local perturbation such as a traffic light. At the microscopic scale, we consider a first order model of the form "follow the leader" i.e. the velocity of each vehicle depends on the distance to the vehicle in front of it. We consider a local perturbation located at the origin that slows down the vehicles. At the macroscopic scale, we obtain an explicit Hamilton-Jacobi equation left and right of the origin and a junction condition at the origin (in the sense of [25]) which keeps the memory of the local perturbation. As it turns out, the macroscopic model is equivalent to a LWR model, with a flux limiting condition at the junction. Finally, we also present qualitative properties concerning the flux limiter at the junction.

Citation: Nicolas Forcadel, Wilfredo Salazar, Mamdouh Zaydan. Specified homogenization of a discrete traffic model leading to an effective junction condition. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2173-2206. doi: 10.3934/cpaa.2018104
References:
[1]

Y. Achdou and N. Tchou, Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction, Communications in Partial Differential Equations, 40 (2015), 652-693.

[2]

Y. AchdouF. CamilliA. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 413-445.

[3]

Y. AchdouS. Oudet and N. Tchou, Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1091-1121.

[4]

O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 13 (1996), 293-317.

[5]

A. AwA. KlarM. Rascle and T. Materne, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.

[6]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $R^N$, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 710-739.

[7]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $R^N$, SIAM Journal on Control and Optimization, 52 (2014), 1712-1744.

[8]

G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems, preprint, arXiv: math/1611.01977.

[9]

M. Batista and E. Twrdy, Optimal velocity functions for car-following models, Journal of Zhejiang University-SCIENCE A, 11 (2010), 520-529.

[10]

F. CamilliC. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equations on networks, Journal of Differential Equations, 254 (2013), 4122-4143.

[11]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, preprint, arXiv: math/1505.01372,

[12]

M. Di Francesco and M.D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for rational mechanics and analysis, 217 (2015), 831-871.

[13]

C. Edie, Car-following and steady-state theory for noncongested traffic, Operations Research, 9 (1961), 66-76.

[14]

L. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 111 (1989), 359-375.

[15]

N. ForcadelC. Imbert and R. Monneau, Homogenization of fully overdamped Frenkel-Kontorova models, Journal of Differential Equations, 246 (2009), 1057-1097.

[16]

N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, 28 (2015), 1039-1068.

[17]

N. ForcadelC. Imbert and R. Monneau, Homogenization of accelerated Frenkel-Kontorova models with n types of particles, Transactions of the American Mathematical Society, 364 (2012), 6187-6227.

[18]

N. ForcadelC. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete and Continuous Dynamical Systems-Series A, 23 (2009), 785-826.

[19]

N. ForcadelW. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic flow, Discrete and Continuous Dynamical Systems-Series A, 37 (2017), 1437-1487.

[20]

G. GaliseC. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Analysis & PDE, 8 (2015), 1891-1929.

[21]

BD Greenshields, Ws Channing, Hh. Miller and others, A study of traffic capacity, in Highway research board proceedings, (1935).

[22]

D. HelbingA. HenneckeV. Shvetsov and M. Treiber, Micro-and macro-simulation of freeway traffic, Mathematical and Computer Modelling, 35 (2002), 517-547.

[23]

C. Imbert, A non-local regularization of first order Hamilton-Jacobi equations, Journal of Differential Equations, 211 (2005), 218-246.

[24]

C. Imbert and R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case, Discrete and Continuous Dynamical Systems-Series A, 37 (2014), 6405-6435.

[25]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Annales Scientifiques de l'ENS, 50 (2017), 357-448.

[26]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 129-166.

[27]

C. ImbertR. Monneau and E. Rouy, Homogenization of first order equations with (u/${\varepsilon}$)-periodic hamiltonians part ii: Application to dislocations dynamics, Communications in Partial Differential Equations, 33 (2008), 479-516.

[28]

J. P. Lebacque and M. M. Khoshyaran, Modelling vehicular traffic flow on networks using macroscopic models, Finite Volumes for Complex Applications Ⅱ, (1999), 551-558.

[29]

H. K. Lee, H. W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Physical Review E, 64 (2001), 056126.

[30]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229 (1955), 317-345.

[31]

P. L. Lions, Lectures at Collège de France, (2015-2016).

[32]

P. L. Lions, Lectures at Collège de France, (2013-2014).

[33]

P. L. Lions and P. E. Souganidis, Viscosity solutions for junctions: well posedness and stability, Rendiconti Lincei-Matematica e Applicazioni, 27 (2016), 535-545.

[34]

G. F. Newell, Nonlinear effects in the dynamics of car following, Operations research, 9 (1961), 209-229.

[35]

H. J. Payne, Models of freeway traffic and control, Mathematical Models of Public Systems, (1971).

[36]

P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.

[37]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete & Continuous Dynamical Systems-Series S, 7 (2014).

[38]

W. Salazar, Numerical specified homogenization of a discrete model with a local perturbation and application to traffic flow, (2016).

[39]

D. Slepčev, Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 79-115.

show all references

References:
[1]

Y. Achdou and N. Tchou, Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction, Communications in Partial Differential Equations, 40 (2015), 652-693.

[2]

Y. AchdouF. CamilliA. Cutrì and N. Tchou, Hamilton-Jacobi equations constrained on networks, Nonlinear Differential Equations and Applications NoDEA, 20 (2013), 413-445.

[3]

Y. AchdouS. Oudet and N. Tchou, Effective transmission conditions for Hamilton-Jacobi equations defined on two domains separated by an oscillatory interface, Journal de Mathématiques Pures et Appliquées, 106 (2016), 1091-1121.

[4]

O. Alvarez and A. Tourin, Viscosity solutions of nonlinear integro-differential equations, Annales de l'Institut Henri Poincaré. Analyse non linéaire, 13 (1996), 293-317.

[5]

A. AwA. KlarM. Rascle and T. Materne, Derivation of continuum traffic flow models from microscopic follow-the-leader models, SIAM Journal on Applied Mathematics, 63 (2002), 259-278.

[6]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for two-domains optimal control problems in $R^N$, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 710-739.

[7]

G. BarlesA. Briani and E. Chasseigne, A Bellman approach for regional optimal control problems in $R^N$, SIAM Journal on Control and Optimization, 52 (2014), 1712-1744.

[8]

G. Barles, A. Briani, E. Chasseigne and C. Imbert, Flux-limited and classical viscosity solutions for regional control problems, preprint, arXiv: math/1611.01977.

[9]

M. Batista and E. Twrdy, Optimal velocity functions for car-following models, Journal of Zhejiang University-SCIENCE A, 11 (2010), 520-529.

[10]

F. CamilliC. Marchi and D. Schieborn, The vanishing viscosity limit for Hamilton-Jacobi equations on networks, Journal of Differential Equations, 254 (2013), 4122-4143.

[11]

E. Cristiani and S. Sahu, On the micro-to-macro limit for first-order traffic flow models on networks, preprint, arXiv: math/1505.01372,

[12]

M. Di Francesco and M.D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for rational mechanics and analysis, 217 (2015), 831-871.

[13]

C. Edie, Car-following and steady-state theory for noncongested traffic, Operations Research, 9 (1961), 66-76.

[14]

L. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 111 (1989), 359-375.

[15]

N. ForcadelC. Imbert and R. Monneau, Homogenization of fully overdamped Frenkel-Kontorova models, Journal of Differential Equations, 246 (2009), 1057-1097.

[16]

N. Forcadel and W. Salazar, Homogenization of second order discrete model and application to traffic flow, Differential and Integral Equations, 28 (2015), 1039-1068.

[17]

N. ForcadelC. Imbert and R. Monneau, Homogenization of accelerated Frenkel-Kontorova models with n types of particles, Transactions of the American Mathematical Society, 364 (2012), 6187-6227.

[18]

N. ForcadelC. Imbert and R. Monneau, Homogenization of some particle systems with two-body interactions and of the dislocation dynamics, Discrete and Continuous Dynamical Systems-Series A, 23 (2009), 785-826.

[19]

N. ForcadelW. Salazar and M. Zaydan, Homogenization of second order discrete model with local perturbation and application to traffic flow, Discrete and Continuous Dynamical Systems-Series A, 37 (2017), 1437-1487.

[20]

G. GaliseC. Imbert and R. Monneau, A junction condition by specified homogenization and application to traffic lights, Analysis & PDE, 8 (2015), 1891-1929.

[21]

BD Greenshields, Ws Channing, Hh. Miller and others, A study of traffic capacity, in Highway research board proceedings, (1935).

[22]

D. HelbingA. HenneckeV. Shvetsov and M. Treiber, Micro-and macro-simulation of freeway traffic, Mathematical and Computer Modelling, 35 (2002), 517-547.

[23]

C. Imbert, A non-local regularization of first order Hamilton-Jacobi equations, Journal of Differential Equations, 211 (2005), 218-246.

[24]

C. Imbert and R. Monneau, Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case, Discrete and Continuous Dynamical Systems-Series A, 37 (2014), 6405-6435.

[25]

C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks, Annales Scientifiques de l'ENS, 50 (2017), 357-448.

[26]

C. ImbertR. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 129-166.

[27]

C. ImbertR. Monneau and E. Rouy, Homogenization of first order equations with (u/${\varepsilon}$)-periodic hamiltonians part ii: Application to dislocations dynamics, Communications in Partial Differential Equations, 33 (2008), 479-516.

[28]

J. P. Lebacque and M. M. Khoshyaran, Modelling vehicular traffic flow on networks using macroscopic models, Finite Volumes for Complex Applications Ⅱ, (1999), 551-558.

[29]

H. K. Lee, H. W. Lee and D. Kim, Macroscopic traffic models from microscopic car-following models, Physical Review E, 64 (2001), 056126.

[30]

M. J. Lighthill and G. B. Whitham, On kinematic waves. Ⅱ. A theory of traffic flow on long crowded roads, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 229 (1955), 317-345.

[31]

P. L. Lions, Lectures at Collège de France, (2015-2016).

[32]

P. L. Lions, Lectures at Collège de France, (2013-2014).

[33]

P. L. Lions and P. E. Souganidis, Viscosity solutions for junctions: well posedness and stability, Rendiconti Lincei-Matematica e Applicazioni, 27 (2016), 535-545.

[34]

G. F. Newell, Nonlinear effects in the dynamics of car following, Operations research, 9 (1961), 209-229.

[35]

H. J. Payne, Models of freeway traffic and control, Mathematical Models of Public Systems, (1971).

[36]

P. I. Richards, Shock waves on the highway, Operations Research, 4 (1956), 42-51.

[37]

E. Rossi, A justification of a LWR model based on a follow the leader description, Discrete & Continuous Dynamical Systems-Series S, 7 (2014).

[38]

W. Salazar, Numerical specified homogenization of a discrete model with a local perturbation and application to traffic flow, (2016).

[39]

D. Slepčev, Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions, Nonlinear Analysis: Theory, Methods & Applications, 52 (2003), 79-115.

Figure 1.  Schematic representation of the microscopic model
Figure 2.  Schematic representation of the macroscopic model
Figure 3.  Schematic representation of the optimal velocity function $V$
Figure 4.  Schematic representation of $\bar{H}$
Figure 5.  Schematic representation of the function $\rho$
Figure 6.  Schematic representation of the function $\rho$
[1]

Mihai Bostan, Gawtum Namah. Time periodic viscosity solutions of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2007, 6 (2) : 389-410. doi: 10.3934/cpaa.2007.6.389

[2]

Olga Bernardi, Franco Cardin. Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case. Communications on Pure & Applied Analysis, 2006, 5 (4) : 793-812. doi: 10.3934/cpaa.2006.5.793

[3]

Kaizhi Wang, Jun Yan. Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1649-1659. doi: 10.3934/dcds.2016.36.1649

[4]

Nestor Guillen, Russell W. Schwab. Neumann homogenization via integro-differential operators. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3677-3703. doi: 10.3934/dcds.2016.36.3677

[5]

Isabeau Birindelli, J. Wigniolle. Homogenization of Hamilton-Jacobi equations in the Heisenberg group. Communications on Pure & Applied Analysis, 2003, 2 (4) : 461-479. doi: 10.3934/cpaa.2003.2.461

[6]

Kai Zhao, Wei Cheng. On the vanishing contact structure for viscosity solutions of contact type Hamilton-Jacobi equations I: Cauchy problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4345-4358. doi: 10.3934/dcds.2019176

[7]

Olivier Bonnefon, Jérôme Coville, Jimmy Garnier, Lionel Roques. Inside dynamics of solutions of integro-differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3057-3085. doi: 10.3934/dcdsb.2014.19.3057

[8]

Michael Herty, Reinhard Illner. Analytical and numerical investigations of refined macroscopic traffic flow models. Kinetic & Related Models, 2010, 3 (2) : 311-333. doi: 10.3934/krm.2010.3.311

[9]

Xu Chen, Jianping Wan. Integro-differential equations for foreign currency option prices in exponential Lévy models. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 529-537. doi: 10.3934/dcdsb.2007.8.529

[10]

Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic & Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033

[11]

Olga Bernardi, Franco Cardin. On $C^0$-variational solutions for Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 385-406. doi: 10.3934/dcds.2011.31.385

[12]

Gawtum Namah, Mohammed Sbihi. A notion of extremal solutions for time periodic Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 647-664. doi: 10.3934/dcdsb.2010.13.647

[13]

Gui-Qiang Chen, Bo Su. Discontinuous solutions for Hamilton-Jacobi equations: Uniqueness and regularity. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 167-192. doi: 10.3934/dcds.2003.9.167

[14]

David McCaffrey. A representational formula for variational solutions to Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1205-1215. doi: 10.3934/cpaa.2012.11.1205

[15]

Eddaly Guerra, Héctor Sánchez-Morgado. Vanishing viscosity limits for space-time periodic Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 331-346. doi: 10.3934/cpaa.2014.13.331

[16]

Guillaume Costeseque, Jean-Patrick Lebacque. Discussion about traffic junction modelling: Conservation laws VS Hamilton-Jacobi equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 411-433. doi: 10.3934/dcdss.2014.7.411

[17]

Nalini Anantharaman, Renato Iturriaga, Pablo Padilla, Héctor Sánchez-Morgado. Physical solutions of the Hamilton-Jacobi equation. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 513-528. doi: 10.3934/dcdsb.2005.5.513

[18]

Claudio Marchi. On the convergence of singular perturbations of Hamilton-Jacobi equations. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1363-1377. doi: 10.3934/cpaa.2010.9.1363

[19]

Yubo Chen, Wan Zhuang. The extreme solutions of PBVP for integro-differential equations with caratheodory functions. Conference Publications, 1998, 1998 (Special) : 160-166. doi: 10.3934/proc.1998.1998.160

[20]

Tianling Jin, Jingang Xiong. Schauder estimates for solutions of linear parabolic integro-differential equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5977-5998. doi: 10.3934/dcds.2015.35.5977

2017 Impact Factor: 0.884

Metrics

  • PDF downloads (33)
  • HTML views (143)
  • Cited by (0)

[Back to Top]