September  2018, 17(5): 2207-2224. doi: 10.3934/cpaa.2018105

Local inversion of a class of piecewise regular maps

Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Via Santa Marta 3, 50139 Firenze, Italy

* Corresponding author

Received  July 2017 Revised  January 2018 Published  April 2018

Fund Project: The authors were partially supported by the "Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni" of the Istituto Nazionale di Alta Matematica "F. Severi".

This paper provides sufficient conditions for any map L, that is strongly piecewise linear relatively to a decomposition of $\mathbb{R}^k$ in admissible cones, to be invertible. Namely, via a degree theory argument, we show that when there are at most four convex pieces (or three pieces with at most a non convex one), the map is invertible. Examples show that the result cannot be plainly extended to a greater number of pieces. Our result is obtained by studying the structure of strongly piecewise linear maps. We then extend the results to the PC1 case.

Citation: Laura Poggiolini, Marco Spadini. Local inversion of a class of piecewise regular maps. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2207-2224. doi: 10.3934/cpaa.2018105
References:
[1]

P. Benevieri, M. Furi, M. P. Pera and M. Spadini, An Introduction to Topological Degree in Euclidean Spaces, Technical Report n. 42, Gennaio 2003, Università di Firenze, Dipartimento di Matematica Applicata, 2003. Google Scholar

[2]

F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 1-39.   Google Scholar

[3]

S. A. BurdenS. S. SastryD. E. Koditschek and S. Revzen, Event-selected vector field discontinuities yield piecewise-differentiable flows, SIAM J. Appl. Dyn. Syst., 15 (2016), 1227-1267.   Google Scholar

[4]

F. H. Clarke, On the inverse function theorem, Pacific J. Mathematics, 64 (1976), 97-102.   Google Scholar

[5]

F. H. Clarke, Optimization And Nonsmooth Analysis Unrev. reprinting of the orig., publ. 1983 by Wiley, Montréal: Centre de Recherches Mathématiques, Université de Montréal, 1989.  Google Scholar

[6]

K. Deimling. Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985.  Google Scholar

[7]

L. Kuntz and S. Scholtes, Structural analysis of nonsmooth mappings, inverse functions and metric projections, Journal of Mathematical Analysis and Applications, 188 (1994), 346-386.   Google Scholar

[8]

N. G. Lloyd, Degree Theory Cambridge Tracts in Math. 73, Cambridge University Press, Cambridge, 1978.  Google Scholar

[9]

J. Milnor, Topology from The Differentiable Viewpoint , The University Press of Virginia, 1965.  Google Scholar

[10]

J. S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis of normal maps, Mathematics of Operations Research, 21 (1996), 401-426.   Google Scholar

[11]

Sufficient optimality conditions for a bang-bang trajectory in a Bolza problem. In, Mathematical Control Theory and Finance, (eds. A. Sarychev, A. Shiryaev, M. Guerra, and M. do Rosário Grossinho), Springer, Berlin Heidelberg, (2008), 337-357.  Google Scholar

[12]

L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem, SIAM Journal on Control and Optimization 49 (2011), 140-161,  Google Scholar

[13]

L. Poggiolini and M. Spadini, Local inversion of planar maps with nice nondifferentiability structure, Adv. Nonlin. Studies, 13 (2013), 411-430.   Google Scholar

[14]

L. Poggiolini and M. Spadini, Bang-bang trajectories with a double switching time in the minimum time problem, ESAIM: Control Optimization and Calculus of Variations, 22 (2016), 688-709.   Google Scholar

[15]

E. Rosset, Topological degree in $\mathbb{R}^n$, Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics, 20 (1988), 319-329. Available from: http://hdl.handle.net/10077/4865.  Google Scholar

[16]

S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer briefs in optimization. Springer, New York, 2012.  Google Scholar

show all references

References:
[1]

P. Benevieri, M. Furi, M. P. Pera and M. Spadini, An Introduction to Topological Degree in Euclidean Spaces, Technical Report n. 42, Gennaio 2003, Università di Firenze, Dipartimento di Matematica Applicata, 2003. Google Scholar

[2]

F. E. Browder, Fixed point theory and nonlinear problems, Bull. Amer. Math. Soc. (N.S.), 9 (1983), 1-39.   Google Scholar

[3]

S. A. BurdenS. S. SastryD. E. Koditschek and S. Revzen, Event-selected vector field discontinuities yield piecewise-differentiable flows, SIAM J. Appl. Dyn. Syst., 15 (2016), 1227-1267.   Google Scholar

[4]

F. H. Clarke, On the inverse function theorem, Pacific J. Mathematics, 64 (1976), 97-102.   Google Scholar

[5]

F. H. Clarke, Optimization And Nonsmooth Analysis Unrev. reprinting of the orig., publ. 1983 by Wiley, Montréal: Centre de Recherches Mathématiques, Université de Montréal, 1989.  Google Scholar

[6]

K. Deimling. Nonlinear Functional Analysis Springer-Verlag, Berlin, 1985.  Google Scholar

[7]

L. Kuntz and S. Scholtes, Structural analysis of nonsmooth mappings, inverse functions and metric projections, Journal of Mathematical Analysis and Applications, 188 (1994), 346-386.   Google Scholar

[8]

N. G. Lloyd, Degree Theory Cambridge Tracts in Math. 73, Cambridge University Press, Cambridge, 1978.  Google Scholar

[9]

J. Milnor, Topology from The Differentiable Viewpoint , The University Press of Virginia, 1965.  Google Scholar

[10]

J. S. Pang and D. Ralph, Piecewise smoothness, local invertibility, and parametric analysis of normal maps, Mathematics of Operations Research, 21 (1996), 401-426.   Google Scholar

[11]

Sufficient optimality conditions for a bang-bang trajectory in a Bolza problem. In, Mathematical Control Theory and Finance, (eds. A. Sarychev, A. Shiryaev, M. Guerra, and M. do Rosário Grossinho), Springer, Berlin Heidelberg, (2008), 337-357.  Google Scholar

[12]

L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem, SIAM Journal on Control and Optimization 49 (2011), 140-161,  Google Scholar

[13]

L. Poggiolini and M. Spadini, Local inversion of planar maps with nice nondifferentiability structure, Adv. Nonlin. Studies, 13 (2013), 411-430.   Google Scholar

[14]

L. Poggiolini and M. Spadini, Bang-bang trajectories with a double switching time in the minimum time problem, ESAIM: Control Optimization and Calculus of Variations, 22 (2016), 688-709.   Google Scholar

[15]

E. Rosset, Topological degree in $\mathbb{R}^n$, Rendiconti dell'Istituto di Matematica dell'Università di Trieste. An International Journal of Mathematics, 20 (1988), 319-329. Available from: http://hdl.handle.net/10077/4865.  Google Scholar

[16]

S. Scholtes, Introduction to Piecewise Differentiable Equations, Springer briefs in optimization. Springer, New York, 2012.  Google Scholar

Figure 1.  The image of the unit disk centered at the origin in the plane $z = 0$ under the map $G$ of Example 2.4.
Figure 2.  The three cones in Example 3.2 for different choices of α and β. The z axis is not shown because it is assumed perpendicular to the page.
Figure 3.  Image of the unit sphere under $\mathcal{G}$ as in Example 3.2 for different choices of the parameters $\alpha$, $\beta$, $s_1$, $s_2$, $s_3$. The dark continuous line represents the image of the circle of radius $1$ centered at the origin.
Figure 4.  The image of the unit sphere centered at the origin under the map G of Example 3.5 The green lines on the left are the intersections of the cones C1, …, C4 with the unit sphere, those on the right are their images.
Figure 5.  The decomposition of $\mathbb{R}^3$ of Example 3.12
[1]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[2]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021002

[3]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[4]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[5]

Claudio Bonanno, Marco Lenci. Pomeau-Manneville maps are global-local mixing. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1051-1069. doi: 10.3934/dcds.2020309

[6]

Huanhuan Tian, Maoan Han. Limit cycle bifurcations of piecewise smooth near-Hamiltonian systems with a switching curve. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020368

[7]

Guoyuan Chen, Yong Liu, Juncheng Wei. Nondegeneracy of harmonic maps from $ {{\mathbb{R}}^{2}} $ to $ {{\mathbb{S}}^{2}} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3215-3233. doi: 10.3934/dcds.2019228

[8]

Magdalena Foryś-Krawiec, Jiří Kupka, Piotr Oprocha, Xueting Tian. On entropy of $ \Phi $-irregular and $ \Phi $-level sets in maps with the shadowing property. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1271-1296. doi: 10.3934/dcds.2020317

[9]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[10]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[11]

Ivan Bailera, Joaquim Borges, Josep Rifà. On Hadamard full propelinear codes with associated group $ C_{2t}\times C_2 $. Advances in Mathematics of Communications, 2021, 15 (1) : 35-54. doi: 10.3934/amc.2020041

[12]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[13]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[14]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[15]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[18]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[19]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[20]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (125)
  • HTML views (168)
  • Cited by (0)

Other articles
by authors

[Back to Top]