-
Previous Article
Liouville theorem for MHD system and its applications
- CPAA Home
- This Issue
-
Next Article
On pressure stabilization method for nonstationary Navier-Stokes equations
Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian
School of Mathematical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, China |
In this paper, we investigate the Moser-Trudinger inequality when it involves a Finsler-Laplacian operator that is associated with functionals containing $F^2(\nabla u)$. Here $F$ is convex and homogeneous of degree 1, and its polar $F^o$ represents a Finsler metric on $\mathbb{R}^n$. We obtain an existence result on the extremal functions for this sharp geometric inequality.
References:
[1] |
A. Alvino, V. Ferone, G. Trombetti and P.-L. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997), 275-293. Google Scholar |
[2] |
L. Carleson and S-Y. A. Chang, One the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113-127. Google Scholar |
[3] |
E. Dibenedetto, C1, α local regularity of weak solutions of degenerate elliptic equations, Nonliear Anal., 7 (1983), 827-850. Google Scholar |
[4] |
M. Flucher, Extremal functions for the Trudinger-Moser inequality in two dimensions, Comment. Math. Helv., 67 (1992), 471-497. Google Scholar |
[5] |
V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253. Google Scholar |
[6] |
J. Serrin, Local behavior of solutions of qusai-linear equations, Acta Math., 111 (1964), 247-302. Google Scholar |
[7] |
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential Theory of Degenerate Elliptic Equations, Oxford University Press, New York, 1993. Google Scholar |
[8] |
K. Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc., 348 (1996), 2663-2671. Google Scholar |
[9] |
G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. Google Scholar |
[10] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092. Google Scholar |
[11] |
I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Scet., 119 (1991), 125-136. Google Scholar |
[12] |
S. Pohozaev, The sobolev embedding in the special case pl = n, in Proceedings of the Technical Scientific Conference on Advances of Scientific Reseach, Mathmatic sections, Mosco. Energet. inst., (1965), 158–170. Google Scholar |
[13] |
P. Tolksdorf, Regularity for a more general class of qusilinear elliptic equations, J. Math. Mech., 51 (1984), 126-150. Google Scholar |
[14] |
N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. Google Scholar |
[15] |
P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations, 8 (1983), 773-817. Google Scholar |
[16] |
G. F. Wang and C. Xia, A characterization of the wulff shape by an overdetermined anisotropic PDE, Arch. Ration. Mech. Anal., 199 (2011), 99-115. Google Scholar |
[17] |
G. F. Wang and D. Ye, A hardy-Moser-Trudinger inequality, Adv. Math., 230 (2012), 294-320. Google Scholar |
[18] |
G. F. Wang and C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differential Equations, 252 (2012), 1668-1770. Google Scholar |
[19] |
G. F. Wang and C. Xia, An optimal anisotropic Poincare inequality for convex domains, Pacific J. Math., 258 (2012), 305-325. Google Scholar |
[20] |
Y. Y. Yang, A sharp form of Moser-Trudinger inequality in high dimension, J. Functi. Anal., 239 (2006), 100-126. Google Scholar |
[21] |
M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771-783. Google Scholar |
show all references
References:
[1] |
A. Alvino, V. Ferone, G. Trombetti and P.-L. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincare Anal. Non Lineaire, 14 (1997), 275-293. Google Scholar |
[2] |
L. Carleson and S-Y. A. Chang, One the existence of an extremal function for an inequality of J. Moser, Bull. Sci. Math., 110 (1986), 113-127. Google Scholar |
[3] |
E. Dibenedetto, C1, α local regularity of weak solutions of degenerate elliptic equations, Nonliear Anal., 7 (1983), 827-850. Google Scholar |
[4] |
M. Flucher, Extremal functions for the Trudinger-Moser inequality in two dimensions, Comment. Math. Helv., 67 (1992), 471-497. Google Scholar |
[5] |
V. Ferone and B. Kawohl, Remarks on a Finsler-Laplacian, Proc. Amer. Math. Soc., 137 (2009), 247-253. Google Scholar |
[6] |
J. Serrin, Local behavior of solutions of qusai-linear equations, Acta Math., 111 (1964), 247-302. Google Scholar |
[7] |
J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear potential Theory of Degenerate Elliptic Equations, Oxford University Press, New York, 1993. Google Scholar |
[8] |
K. Lin, Extremal functions for Moser's inequality, Trans. Amer. Math. Soc., 348 (1996), 2663-2671. Google Scholar |
[9] |
G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal., 12 (1988), 1203-1219. Google Scholar |
[10] |
J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077-1092. Google Scholar |
[11] |
I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem, Proc. Roy. Soc. Edinburgh Scet., 119 (1991), 125-136. Google Scholar |
[12] |
S. Pohozaev, The sobolev embedding in the special case pl = n, in Proceedings of the Technical Scientific Conference on Advances of Scientific Reseach, Mathmatic sections, Mosco. Energet. inst., (1965), 158–170. Google Scholar |
[13] |
P. Tolksdorf, Regularity for a more general class of qusilinear elliptic equations, J. Math. Mech., 51 (1984), 126-150. Google Scholar |
[14] |
N. S. Trudinger, On embeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473-483. Google Scholar |
[15] |
P. Tolksdorf, On the Dirichlet problem for quasilinear equations in domains with conical boundary points, Comm. Partial Differential Equations, 8 (1983), 773-817. Google Scholar |
[16] |
G. F. Wang and C. Xia, A characterization of the wulff shape by an overdetermined anisotropic PDE, Arch. Ration. Mech. Anal., 199 (2011), 99-115. Google Scholar |
[17] |
G. F. Wang and D. Ye, A hardy-Moser-Trudinger inequality, Adv. Math., 230 (2012), 294-320. Google Scholar |
[18] |
G. F. Wang and C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differential Equations, 252 (2012), 1668-1770. Google Scholar |
[19] |
G. F. Wang and C. Xia, An optimal anisotropic Poincare inequality for convex domains, Pacific J. Math., 258 (2012), 305-325. Google Scholar |
[20] |
Y. Y. Yang, A sharp form of Moser-Trudinger inequality in high dimension, J. Functi. Anal., 239 (2006), 100-126. Google Scholar |
[21] |
M. Belloni, V. Ferone and B. Kawohl, Isoperimetric inequalities, wulff shape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771-783. Google Scholar |
[1] |
Prosenjit Roy. On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (9) : 5207-5222. doi: 10.3934/dcds.2019212 |
[2] |
Guozhen Lu, Yunyan Yang. Sharp constant and extremal function for the improved Moser-Trudinger inequality involving $L^p$ norm in two dimension. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 963-979. doi: 10.3934/dcds.2009.25.963 |
[3] |
Changliang Zhou, Chunqin Zhou. On the anisotropic Moser-Trudinger inequality for unbounded domains in $ \mathbb R^{n} $. Discrete & Continuous Dynamical Systems - A, 2020, 40 (2) : 847-881. doi: 10.3934/dcds.2020064 |
[4] |
Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121 |
[5] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[6] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure & Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[7] |
Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure & Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047 |
[8] |
Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378 |
[9] |
Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure & Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 |
[10] |
Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455 |
[11] |
Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 |
[12] |
Qiang Lin, Xueteng Tian, Runzhang Xu, Meina Zhang. Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020160 |
[13] |
Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555 |
[14] |
Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058 |
[15] |
C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88 |
[16] |
Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443 |
[17] |
Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1 |
[18] |
Yong Zhou, Zhengguang Guo. Blow up and propagation speed of solutions to the DGH equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 657-670. doi: 10.3934/dcdsb.2009.12.657 |
[19] |
Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155 |
[20] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]