• Previous Article
    Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms
  • CPAA Home
  • This Issue
  • Next Article
    Well-posedness for a non-isothermal flow of two viscous incompressible fluids
November  2018, 17(6): 2479-2493. doi: 10.3934/cpaa.2018118

Coupled systems of Hilfer fractional differential inclusions in banach spaces

1. 

Laboratory of Mathematics, Geometry, Analysis, Control and Applications, Tahar Moulay University of Saïda, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria

2. 

Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, 22000, Algeria

3. 

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

* Corresponding author

Received  October 2017 Revised  January 2018 Published  June 2018

This paper deals with some existence results in Banach spaces for Hilfer and Hilfer-Hadamard fractional differential inclusions. The main tools used in the proofs are Mönch's fixed point theorem and the concept of a measure of noncompactness.

Citation: Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2479-2493. doi: 10.3934/cpaa.2018118
References:
[1]

S. Abbas and M. Benchohra, Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, Math. Slovaca, 67 (2017), 875-894.   Google Scholar

[2]

S. AbbasM. Benchohra and M. A. Darwish, Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, Discus. Math. Diff. Incl., Contr. Optim., 36 (2016), 155-179.   Google Scholar

[3]

S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear. Google Scholar

[4] S. AbbasM. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.   Google Scholar
[5] S. AbbasM. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.   Google Scholar
[6] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.   Google Scholar
[7] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.   Google Scholar
[8]

J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997. Google Scholar

[9]

J. Bana and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980. Google Scholar

[10]

M. BenchohraJ. HendersonS. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.   Google Scholar

[11]

M. BenchohraJ. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419-428.   Google Scholar

[12]

M. Benchohra and D. Seba, Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 2012 (2012), 8 pp.   Google Scholar

[13] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992.   Google Scholar
[14]

K. M. Furati, M. D. Kassim. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235 (2013), 10 pp.   Google Scholar

[15]

K. M. FuratiM. D. Kassim and N. e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.   Google Scholar

[16]

J. R. GraefN. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Studia Universitatis BabeşBolyai Mathematica, 62 (2017), 427-438.   Google Scholar

[17]

J. R. GraefN. Guerraiche and S. Hamani, Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Surv. Math. Appl., 13 (2018), 27-40.   Google Scholar

[18]

H. P. Heinz, On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear. Anal., 7 (1983), 1351-1371.   Google Scholar

[19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.   Google Scholar
[20]

Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. Google Scholar

[21]

R. Kamocki and C. Obcz′nnski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 50 (2016), 1-12.   Google Scholar

[22]

A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.   Google Scholar

[23] A. A. KilbasH. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.   Google Scholar
[24]

V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.   Google Scholar

[25]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.   Google Scholar

[26]

V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.   Google Scholar

[27]

A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.   Google Scholar

[28]

D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.   Google Scholar

[29]

M. D. Qassim, K. M. Furati and N. -e. Tatar, On a differential equation involving HilferHadamard fractional derivative, Abstr. Appl. Anal., Vol. 2012, Article ID 391062, 17 pages, 2012. Google Scholar

[30]

M. D. Qassim and N. -e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., Vol. 2013, Article ID 605029, 12 pages, 2013. Google Scholar

[31]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. Google Scholar

[32] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.   Google Scholar
[33]

Ž. TomovskiR. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814.   Google Scholar

[34]

J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859.   Google Scholar

[35] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.   Google Scholar

show all references

References:
[1]

S. Abbas and M. Benchohra, Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, Math. Slovaca, 67 (2017), 875-894.   Google Scholar

[2]

S. AbbasM. Benchohra and M. A. Darwish, Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, Discus. Math. Diff. Incl., Contr. Optim., 36 (2016), 155-179.   Google Scholar

[3]

S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear. Google Scholar

[4] S. AbbasM. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.   Google Scholar
[5] S. AbbasM. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.   Google Scholar
[6] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.   Google Scholar
[7] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.   Google Scholar
[8]

J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997. Google Scholar

[9]

J. Bana and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980. Google Scholar

[10]

M. BenchohraJ. HendersonS. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.   Google Scholar

[11]

M. BenchohraJ. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419-428.   Google Scholar

[12]

M. Benchohra and D. Seba, Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 2012 (2012), 8 pp.   Google Scholar

[13] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992.   Google Scholar
[14]

K. M. Furati, M. D. Kassim. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235 (2013), 10 pp.   Google Scholar

[15]

K. M. FuratiM. D. Kassim and N. e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.   Google Scholar

[16]

J. R. GraefN. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Studia Universitatis BabeşBolyai Mathematica, 62 (2017), 427-438.   Google Scholar

[17]

J. R. GraefN. Guerraiche and S. Hamani, Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Surv. Math. Appl., 13 (2018), 27-40.   Google Scholar

[18]

H. P. Heinz, On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear. Anal., 7 (1983), 1351-1371.   Google Scholar

[19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.   Google Scholar
[20]

Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. Google Scholar

[21]

R. Kamocki and C. Obcz′nnski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 50 (2016), 1-12.   Google Scholar

[22]

A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.   Google Scholar

[23] A. A. KilbasH. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.   Google Scholar
[24]

V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.   Google Scholar

[25]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.   Google Scholar

[26]

V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.   Google Scholar

[27]

A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.   Google Scholar

[28]

D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.   Google Scholar

[29]

M. D. Qassim, K. M. Furati and N. -e. Tatar, On a differential equation involving HilferHadamard fractional derivative, Abstr. Appl. Anal., Vol. 2012, Article ID 391062, 17 pages, 2012. Google Scholar

[30]

M. D. Qassim and N. -e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., Vol. 2013, Article ID 605029, 12 pages, 2013. Google Scholar

[31]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. Google Scholar

[32] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.   Google Scholar
[33]

Ž. TomovskiR. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814.   Google Scholar

[34]

J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859.   Google Scholar

[35] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.   Google Scholar
[1]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[2]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[3]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[4]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[5]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[6]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[7]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[8]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[9]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[12]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[13]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[14]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, 2021, 20 (1) : 339-358. doi: 10.3934/cpaa.2020269

[15]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[16]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[17]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[20]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (316)
  • HTML views (216)
  • Cited by (6)

Other articles
by authors

[Back to Top]