-
Previous Article
Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms
- CPAA Home
- This Issue
-
Next Article
Well-posedness for a non-isothermal flow of two viscous incompressible fluids
Coupled systems of Hilfer fractional differential inclusions in banach spaces
1. | Laboratory of Mathematics, Geometry, Analysis, Control and Applications, Tahar Moulay University of Saïda, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria |
2. | Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, 22000, Algeria |
3. | Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA |
This paper deals with some existence results in Banach spaces for Hilfer and Hilfer-Hadamard fractional differential inclusions. The main tools used in the proofs are Mönch's fixed point theorem and the concept of a measure of noncompactness.
References:
[1] |
S. Abbas and M. Benchohra,
Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, Math. Slovaca, 67 (2017), 875-894.
|
[2] |
S. Abbas, M. Benchohra and M. A. Darwish,
Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, Discus. Math. Diff. Incl., Contr. Optim., 36 (2016), 155-179.
|
[3] |
S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear. |
[4] |
S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
![]() |
[5] |
S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
![]() |
[6] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.
![]() |
[7] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
![]() |
[8] |
J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997. |
[9] |
J. Bana |
[10] |
M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab,
Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.
|
[11] |
M. Benchohra, J. Henderson and D. Seba,
Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419-428.
|
[12] |
M. Benchohra and D. Seba,
Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 2012 (2012), 8 pp.
|
[13] |
K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992.
![]() |
[14] |
K. M. Furati,
M. D. Kassim. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235 (2013), 10 pp.
|
[15] |
K. M. Furati, M. D. Kassim and N. e-. Tatar,
Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.
|
[16] |
J. R. Graef, N. Guerraiche and S. Hamani,
Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Studia Universitatis BabeşBolyai Mathematica, 62 (2017), 427-438.
|
[17] |
J. R. Graef, N. Guerraiche and S. Hamani,
Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Surv. Math. Appl., 13 (2018), 27-40.
|
[18] |
H. P. Heinz,
On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear. Anal., 7 (1983), 1351-1371.
|
[19] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
![]() |
[20] |
Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. |
[21] |
R. Kamocki and C. Obcz′nnski,
On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 50 (2016), 1-12.
|
[22] |
A. A. Kilbas,
Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
|
[23] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
![]() |
[24] |
V. Lakshmikantham and J. Vasundhara Devi,
Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.
|
[25] |
V. Lakshmikantham and A. S. Vatsala,
Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.
|
[26] |
V. Lakshmikantham and A. S. Vatsala,
General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.
|
[27] |
A. Lasota and Z. Opial,
An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.
|
[28] |
D. O'Regan and R. Precup,
Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.
|
[29] |
M. D. Qassim, K. M. Furati and N. -e. Tatar, On a differential equation involving HilferHadamard fractional derivative, Abstr. Appl. Anal., Vol. 2012, Article ID 391062, 17 pages, 2012. |
[30] |
M. D. Qassim and N. -e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., Vol. 2013, Article ID 605029, 12 pages, 2013. |
[31] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. |
[32] |
V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
![]() |
[33] |
Ž. Tomovski, R. Hilfer and H. M. Srivastava,
Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814.
|
[34] |
J.-R. Wang and Y. Zhang,
Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859.
|
[35] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
![]() |
show all references
References:
[1] |
S. Abbas and M. Benchohra,
Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, Math. Slovaca, 67 (2017), 875-894.
|
[2] |
S. Abbas, M. Benchohra and M. A. Darwish,
Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, Discus. Math. Diff. Incl., Contr. Optim., 36 (2016), 155-179.
|
[3] |
S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear. |
[4] |
S. Abbas, M. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.
![]() |
[5] |
S. Abbas, M. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.
![]() |
[6] |
J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.
![]() |
[7] |
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.
![]() |
[8] |
J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997. |
[9] |
J. Bana |
[10] |
M. Benchohra, J. Henderson, S. K. Ntouyas and A. Ouahab,
Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.
|
[11] |
M. Benchohra, J. Henderson and D. Seba,
Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419-428.
|
[12] |
M. Benchohra and D. Seba,
Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 2012 (2012), 8 pp.
|
[13] |
K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992.
![]() |
[14] |
K. M. Furati,
M. D. Kassim. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235 (2013), 10 pp.
|
[15] |
K. M. Furati, M. D. Kassim and N. e-. Tatar,
Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.
|
[16] |
J. R. Graef, N. Guerraiche and S. Hamani,
Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Studia Universitatis BabeşBolyai Mathematica, 62 (2017), 427-438.
|
[17] |
J. R. Graef, N. Guerraiche and S. Hamani,
Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Surv. Math. Appl., 13 (2018), 27-40.
|
[18] |
H. P. Heinz,
On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear. Anal., 7 (1983), 1351-1371.
|
[19] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.
![]() |
[20] |
Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. |
[21] |
R. Kamocki and C. Obcz′nnski,
On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 50 (2016), 1-12.
|
[22] |
A. A. Kilbas,
Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.
|
[23] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.
![]() |
[24] |
V. Lakshmikantham and J. Vasundhara Devi,
Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.
|
[25] |
V. Lakshmikantham and A. S. Vatsala,
Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.
|
[26] |
V. Lakshmikantham and A. S. Vatsala,
General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.
|
[27] |
A. Lasota and Z. Opial,
An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.
|
[28] |
D. O'Regan and R. Precup,
Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.
|
[29] |
M. D. Qassim, K. M. Furati and N. -e. Tatar, On a differential equation involving HilferHadamard fractional derivative, Abstr. Appl. Anal., Vol. 2012, Article ID 391062, 17 pages, 2012. |
[30] |
M. D. Qassim and N. -e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., Vol. 2013, Article ID 605029, 12 pages, 2013. |
[31] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. |
[32] |
V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.
![]() |
[33] |
Ž. Tomovski, R. Hilfer and H. M. Srivastava,
Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814.
|
[34] |
J.-R. Wang and Y. Zhang,
Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859.
|
[35] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.
![]() |
[1] |
Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 |
[2] |
Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007 |
[3] |
Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control and Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016 |
[4] |
Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040 |
[5] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 |
[6] |
Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053 |
[7] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[8] |
George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021, 4 (4) : 221-252. doi: 10.3934/mfc.2021004 |
[9] |
Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033 |
[10] |
Paul Eloe, Jaganmohan Jonnalagadda. Quasilinearization applied to boundary value problems at resonance for Riemann-Liouville fractional differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2719-2734. doi: 10.3934/dcdss.2020220 |
[11] |
Yousef Alnafisah, Hamdy M. Ahmed. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evolution Equations and Control Theory, 2022, 11 (3) : 925-937. doi: 10.3934/eect.2021031 |
[12] |
Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031 |
[13] |
Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations and Control Theory, 2022, 11 (2) : 605-619. doi: 10.3934/eect.2021016 |
[14] |
Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037 |
[15] |
Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems and Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27 |
[16] |
María Guadalupe Morales, Zuzana Došlá, Francisco J. Mendoza. Riemann-Liouville derivative over the space of integrable distributions. Electronic Research Archive, 2020, 28 (2) : 567-587. doi: 10.3934/era.2020030 |
[17] |
Ichrak Bouacida, Mourad Kerboua, Sami Segni. Controllability results for Sobolev type $ \psi - $Hilfer fractional backward perturbed integro-differential equations in Hilbert space. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022028 |
[18] |
Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615 |
[19] |
Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022014 |
[20] |
Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060 |
2020 Impact Factor: 1.916
Tools
Metrics
Other articles
by authors
[Back to Top]