• Previous Article
    Uniqueness for Lp-viscosity solutions for uniformly parabolic Isaacs equations with measurable lower order terms
  • CPAA Home
  • This Issue
  • Next Article
    Well-posedness for a non-isothermal flow of two viscous incompressible fluids
November  2018, 17(6): 2479-2493. doi: 10.3934/cpaa.2018118

Coupled systems of Hilfer fractional differential inclusions in banach spaces

1. 

Laboratory of Mathematics, Geometry, Analysis, Control and Applications, Tahar Moulay University of Saïda, P.O. Box 138, EN-Nasr, 20000 Saïda, Algeria

2. 

Laboratory of Mathematics, Djillali Liabes University of Sidi Bel-Abbès, P.O. Box 89, 22000, Algeria

3. 

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, USA

* Corresponding author

Received  October 2017 Revised  January 2018 Published  June 2018

This paper deals with some existence results in Banach spaces for Hilfer and Hilfer-Hadamard fractional differential inclusions. The main tools used in the proofs are Mönch's fixed point theorem and the concept of a measure of noncompactness.

Citation: Saïd Abbas, Mouffak Benchohra, John R. Graef. Coupled systems of Hilfer fractional differential inclusions in banach spaces. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2479-2493. doi: 10.3934/cpaa.2018118
References:
[1]

S. Abbas and M. Benchohra, Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, Math. Slovaca, 67 (2017), 875-894.   Google Scholar

[2]

S. AbbasM. Benchohra and M. A. Darwish, Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, Discus. Math. Diff. Incl., Contr. Optim., 36 (2016), 155-179.   Google Scholar

[3]

S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear. Google Scholar

[4] S. AbbasM. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.   Google Scholar
[5] S. AbbasM. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.   Google Scholar
[6] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.   Google Scholar
[7] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.   Google Scholar
[8]

J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997. Google Scholar

[9]

J. Bana and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980. Google Scholar

[10]

M. BenchohraJ. HendersonS. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.   Google Scholar

[11]

M. BenchohraJ. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419-428.   Google Scholar

[12]

M. Benchohra and D. Seba, Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 2012 (2012), 8 pp.   Google Scholar

[13] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992.   Google Scholar
[14]

K. M. Furati, M. D. Kassim. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235 (2013), 10 pp.   Google Scholar

[15]

K. M. FuratiM. D. Kassim and N. e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.   Google Scholar

[16]

J. R. GraefN. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Studia Universitatis BabeşBolyai Mathematica, 62 (2017), 427-438.   Google Scholar

[17]

J. R. GraefN. Guerraiche and S. Hamani, Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Surv. Math. Appl., 13 (2018), 27-40.   Google Scholar

[18]

H. P. Heinz, On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear. Anal., 7 (1983), 1351-1371.   Google Scholar

[19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.   Google Scholar
[20]

Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. Google Scholar

[21]

R. Kamocki and C. Obcz′nnski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 50 (2016), 1-12.   Google Scholar

[22]

A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.   Google Scholar

[23] A. A. KilbasH. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.   Google Scholar
[24]

V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.   Google Scholar

[25]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.   Google Scholar

[26]

V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.   Google Scholar

[27]

A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.   Google Scholar

[28]

D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.   Google Scholar

[29]

M. D. Qassim, K. M. Furati and N. -e. Tatar, On a differential equation involving HilferHadamard fractional derivative, Abstr. Appl. Anal., Vol. 2012, Article ID 391062, 17 pages, 2012. Google Scholar

[30]

M. D. Qassim and N. -e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., Vol. 2013, Article ID 605029, 12 pages, 2013. Google Scholar

[31]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. Google Scholar

[32] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.   Google Scholar
[33]

Ž. TomovskiR. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814.   Google Scholar

[34]

J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859.   Google Scholar

[35] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.   Google Scholar

show all references

References:
[1]

S. Abbas and M. Benchohra, Stability results for fractional differential equations with not instantaneous impulses and state-dependent delay, Math. Slovaca, 67 (2017), 875-894.   Google Scholar

[2]

S. AbbasM. Benchohra and M. A. Darwish, Upper and lower solutions method for partial discontinuous fractional differential inclusions with not instantaneous impulses, Discus. Math. Diff. Incl., Contr. Optim., 36 (2016), 155-179.   Google Scholar

[3]

S. Abbas, M. Benchohra, J. R. Graef and J. E. Lazreg, Implicit Hadamard fractional differential equations with impulses under weak topologies, to appear. Google Scholar

[4] S. AbbasM. Benchohra and G.M. N'Guérékata, Topics in Fractional Differential Equations, Springer, New York, 2012.   Google Scholar
[5] S. AbbasM. Benchohra and G.M. N'Guérékata, Advanced Fractional Differential and Integral Equations, Nova Science Publishers, New York, 2015.   Google Scholar
[6] J. P. Aubin and A. Cellina, Differential Inclusions, Springer-Verlag, Berlin-Heidelberg, New York, 1984.   Google Scholar
[7] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston, 1990.   Google Scholar
[8]

J. M. Ayerbee Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures of Noncompactness in Metric Fixed Point Theory, Operator Theory, Advances and Applications, vol 99, Birkhäuser, Basel, Boston, Berlin, 1997. Google Scholar

[9]

J. Bana and K. Goebel, Measures of Noncompactness in Banach Spaces, Dekker, New York, 1980. Google Scholar

[10]

M. BenchohraJ. HendersonS. K. Ntouyas and A. Ouahab, Existence results for functional differential equations of fractional order, J. Math. Anal. Appl., 338 (2008), 1340-1350.   Google Scholar

[11]

M. BenchohraJ. Henderson and D. Seba, Measure of noncompactness and fractional differential equations in Banach spaces, Commun. Appl. Anal., 12 (2008), 419-428.   Google Scholar

[12]

M. Benchohra and D. Seba, Integral equations of fractional order with multiple time delays in Banach spaces, Electron. J. Differential Equations, 2012 (2012), 8 pp.   Google Scholar

[13] K. Deimling, Multivalued Differential Equations, De Gruyter, Berlin-New York, 1992.   Google Scholar
[14]

K. M. Furati, M. D. Kassim. Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differential Equations, 235 (2013), 10 pp.   Google Scholar

[15]

K. M. FuratiM. D. Kassim and N. e-. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616-1626.   Google Scholar

[16]

J. R. GraefN. Guerraiche and S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Studia Universitatis BabeşBolyai Mathematica, 62 (2017), 427-438.   Google Scholar

[17]

J. R. GraefN. Guerraiche and S. Hamani, Initial value problems for fractional functional differential inclusions with Hadamard type derivatives in Banach spaces, Surv. Math. Appl., 13 (2018), 27-40.   Google Scholar

[18]

H. P. Heinz, On the behaviour of measure of noncompacteness with respect of differentiation and integration of vector-valued function, Nonlinear. Anal., 7 (1983), 1351-1371.   Google Scholar

[19] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.   Google Scholar
[20]

Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer, Dordrecht, 1997. Google Scholar

[21]

R. Kamocki and C. Obcz′nnski, On fractional Cauchy-type problems containing Hilfer's derivative, Electron. J. Qual. Theory Differ. Equ., 50 (2016), 1-12.   Google Scholar

[22]

A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191-1204.   Google Scholar

[23] A. A. KilbasH. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science B.V., Amsterdam, 2006.   Google Scholar
[24]

V. Lakshmikantham and J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38-45.   Google Scholar

[25]

V. Lakshmikantham and A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682.   Google Scholar

[26]

V. Lakshmikantham and A. S. Vatsala, General uniqueness and monotone iterative technique for fractional differential equations, Appl. Math. Lett., 21 (2008), 828-834.   Google Scholar

[27]

A. Lasota and Z. Opial, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equation, Bull. Accd. Pol. Sci., Ser. Sci. Math. Astronom. Phys., 13 (1965), 781-786.   Google Scholar

[28]

D. O'Regan and R. Precup, Fixed point theorems for set-valued maps and existence principles for integral inclusions, J. Math. Anal. Appl., 245 (2000), 594-612.   Google Scholar

[29]

M. D. Qassim, K. M. Furati and N. -e. Tatar, On a differential equation involving HilferHadamard fractional derivative, Abstr. Appl. Anal., Vol. 2012, Article ID 391062, 17 pages, 2012. Google Scholar

[30]

M. D. Qassim and N. -e. Tatar, Well-posedness and stability for a differential problem with Hilfer-Hadamard fractional derivative, Abstr. Appl. Anal., Vol. 2013, Article ID 605029, 12 pages, 2013. Google Scholar

[31]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Amsterdam, 1987, Engl. Trans. from the Russian. Google Scholar

[32] V. E. Tarasov, Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Heidelberg, Higher Education Press, Beijing, 2010.   Google Scholar
[33]

Ž. TomovskiR. Hilfer and H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integral Transforms Spec. Funct., 21 (2010), 797-814.   Google Scholar

[34]

J.-R. Wang and Y. Zhang, Nonlocal initial value problems for differential equations with Hilfer fractional derivative, Appl. Math. Comput., 266 (2015), 850-859.   Google Scholar

[35] Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014.   Google Scholar
[1]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[2]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 723-739. doi: 10.3934/dcdss.2020040

[3]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[4]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 911-923. doi: 10.3934/dcdss.2020053

[5]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019033

[6]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[7]

Kolade M. Owolabi, Abdon Atangana. High-order solvers for space-fractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 567-590. doi: 10.3934/dcdss.2019037

[8]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[9]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[10]

Abbes Benaissa, Abderrahmane Kasmi. Well-posedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4361-4395. doi: 10.3934/dcdsb.2018168

[11]

Ekta Mittal, Sunil Joshi. Note on a $ k $-generalised fractional derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 797-804. doi: 10.3934/dcdss.2020045

[12]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 975-993. doi: 10.3934/dcdss.2020057

[13]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 937-956. doi: 10.3934/dcdss.2020055

[14]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[15]

Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 741-754. doi: 10.3934/dcdss.2020041

[16]

Imen Manoubi. Theoretical and numerical analysis of the decay rate of solutions to a water wave model with a nonlocal viscous dispersive term with Riemann-Liouville half derivative. Discrete & Continuous Dynamical Systems - B, 2014, 19 (9) : 2837-2863. doi: 10.3934/dcdsb.2014.19.2837

[17]

Jingbo Dou, Huaiyu Zhou. Liouville theorems for fractional Hénon equation and system on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1915-1927. doi: 10.3934/cpaa.2015.14.1915

[18]

Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 995-1006. doi: 10.3934/dcdss.2020058

[19]

Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular Mittag-Leffler kernel. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 609-627. doi: 10.3934/dcdss.2020033

[20]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (146)
  • HTML views (116)
  • Cited by (0)

Other articles
by authors

[Back to Top]