November  2018, 17(6): 2683-2702. doi: 10.3934/cpaa.2018127

Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation

Department of Mathematics and Computer Science, College of Science, University of the Philippines Baguio, Gov. Pack Rd., Baguio City 2600, Philippines

* Corresponding author

Received  March 2017 Revised  August 2017 Published  June 2018

Fund Project: This work was an output from a project funded by the UP System Emerging Interdisciplinary Research (EIDR) Program (OVPAA-EIDR-C05-015).

The exterior Bernoulli free boundary problem is considered and reformulated into a shape optimization setting wherein the Neumann data is being tracked. The shape differentiability of the cost functional associated with the formulation is studied, and the expression for its shape derivative is established through a Lagrangian formulation coupled with the velocity method. Also, it is illustrated how the computed shape derivative can be combined with the modified $H^1$ gradient method to obtain an efficient algorithm for the numerical solution of the shape optimization problem.

Citation: Julius Fergy T. Rabago, Jerico B. Bacani. Shape optimization approach for solving the Bernoulli problem by tracking the Neumann data: A Lagrangian formulation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2683-2702. doi: 10.3934/cpaa.2018127
References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, London, 1975. Google Scholar

[2]

H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144.   Google Scholar

[3]

H. Azegami, A solution to domain optimization problems, Trans of Japan Soc. of Mech. Engs., Ser. A, 60 (1994), 1479-1486 (in Japanese). Google Scholar

[4]

H. Azegami and Z. Q. Wu, Domain optimization analysis in linear elastic problems: approach using traction method, JSME Int J., Ser. A, 39 (1996), 272-278.   Google Scholar

[5]

H. Azegami, S. Kaizu, M. Shimoda and E. Katamine, Irregularity of shape optimization problems and an improvement technique, in Computer Aided Optimization Design of Structures V (S. Hernandez and C. A. Brebbia eds.), Computational Mechanics Publications, Southampton, (1997), 309-326. Google Scholar

[6]

H. Azegami and Z. Takeuchi, A smoothing method for shape optimization: traction method using the Robin condition, Int. J. Comp. Meth-Sing., 3 (2006), 21-33.   Google Scholar

[7]

H. AzegamiS. Fukumoto and T. Aoyama, Shape optimization of continua using nurbs as basis functions, Struct. Multidiscipl. Optimiz., 47 (2013), 247-258.   Google Scholar

[8]

H. AzegamiL. ZhouK. Umemura and N. Kondo, Shape optimization for a link mechanism, Struct. Multidiscipl. Optimiz., 48 (2013), 115-125.   Google Scholar

[9]

B. Abda, F. Bouchon, G. Peichl, M. Sayeh and R. Touzani, A new formulation for the Bernoulli problem, in Proceedings of the 5th International Conference on Inverse Problems, Control and Shape Optimization, (2010), 1-19. Google Scholar

[10]

J. Bacani, Methods of Shape Optimization in Free Boundary Problems, Ph. D. Thesis, Karl-Franzens-Universität Graz, Graz, Austria, 2013. Google Scholar

[11]

J. B. Bacani and G. H. Peichl, On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem, Abstr. Appl. Anal., 2013 (2013), Article ID 384320, 19 pp. Google Scholar

[12]

Z. Belhachmi and H. Meftahi, Shape sensitivity analysis for an interface problem via minimax differentiability, Appl.Math. Comput., 219 (2013), 6828-6842.   Google Scholar

[13]

J. Céa, Numerical methods of shape optimal design, in Optimization of Distributed Parameter Structures 2 (E. J. Haug and J. Céa eds.), Sijthoff and Noordhoff, Alphen aan den Rijn, (1981), 1049-1088. Google Scholar

[14]

J. Céa, Conception optimale ou identification de formes, calcul rapide de la derivee dircetionelle de la fonction cout, Math. Mod. Numer. Anal., 20 (1986), 371-402.   Google Scholar

[15]

D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., (1975), 189-219.   Google Scholar

[16]

R. Correa and A. Seeger, Directional derivative of a minimax function, Nonlinear Anal., 9 (1985), 13-22.   Google Scholar

[17]

M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2$^{nd}$ ed., Adv. Des. Control 22, SIAM, Philadelphia, 2011. Google Scholar

[18]

M. C. Delfour and J.-P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. Control Optim., 26 (1988), 834-862.   Google Scholar

[19]

M. C. Delfour and J.-P. Zolésio, Velocity method and Lagrangian formulation for the computation of the shape Hessian, SIAM J. Control Optim., 29 (1991), 1414-1442.   Google Scholar

[20]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland Publishing Co., Amsterdam, 1976. Translated from the French, Studies in Mathematics and its Applications, Vol. 1. Google Scholar

[21]

K. Eppler and H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems, Comput. Optim. Appl., 52 (2012), 69-85.   Google Scholar

[22]

K. Eppler and H. Harbrecht, Tracking Neumann data for stationary free boundary problems, SIAM J. Control Optim., 48 (2009), 2901-2916.   Google Scholar

[23]

K. Eppler and H. Harbrecht, Tracking the Dirichlet data in $L^2$ is an ill-posed problem, J. Optim. Theory Appl., 145 (2010), 17-35.   Google Scholar

[24]

K. Eppler and H. Harbrecht, Shape optimization for free boundary problems-analysis and numerics, in Constrained Optimization and Optimal Control for Partial Differential Equations, 160 (2012), 277-288. Google Scholar

[25]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, USA, 1998. Google Scholar

[26]

M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation, J. Reine Angew. Math., 486 (2003), 165-204.   Google Scholar

[27]

P. Grisvard, Elliptic Problems in Non-smooth Domains, Pitman Publishing, Marshfield, Massachussetts, USA, 1985. Google Scholar

[28]

A. Friedman, Free boundary problems in science and technology, Notices of the AMS, 47 (2000), 854-861.   Google Scholar

[29]

Z. Gao and Y. Ma, Shape gradient of the dissipated energy functional in shape optimization for the viscous incompressible flow, Appl Numer Math., 58 (2008), 1720-1741.   Google Scholar

[30]

Z. GaoY. Ma and H. W. Zhuang, Shape Hessian for generalized Oseen flow by differentiability of a minimax: a Lagrangian approach, Czech. Math. J., 57 (2007), 987-1011.   Google Scholar

[31]

D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. Google Scholar

[32]

J. Hadamard, Mémoire sur le probleme d’analyse relatif a l’équilibre des plaques élastiques, in Mémoire des savants étrangers, 33, 1907, Œuvres de Jacques Hadamard, editions du C. N. R. S., Paris, (1968), 515-641. Google Scholar

[33]

J. HaslingerK. ItoT. KozubekK. Kunisch and G. Peichl, On the shape derivative for problems of Bernoulli type, Interfaces Free Bound., 1 (2009), 317-330.   Google Scholar

[34]

J. HaslingerT. KozubekK. Kunisch and G. Peichl, Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type, Comput. Optim. Appl., 26 (2003), 231-251.   Google Scholar

[35]

J. HaslingerT. KozubekK. Kunisch and G. Peichl, Fictitious domain methods in shape optimization with applications in free-boundary problems, Comput. Optim. Appl., 26 (2003), 231-251.   Google Scholar

[36]

J. HaslingerT. KozubekK. Kunisch and G. Peichl, An embedding domain approach for a class of 2-d shape optimization problems: mathematical analysis, J. Math. Anal. Appl., 290 (2004), 665-685.   Google Scholar

[37]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.   Google Scholar

[38]

A. Henrot and A. Shangholian, Convexity of free boundaries with Bernoulli type boundary condition, Nonlinear Anal., 28 (1997), 815-823.   Google Scholar

[39]

M. H. Imam, Three dimensional shape optimization, Int. J. Num. Meth. Engrg., 18 (1982), 661-673.   Google Scholar

[40]

H. Kasumba, Shape optimization approaches to free-surface problems, Int. J. Numer. Meth. Fluids, 74 (2014), 818-845.   Google Scholar

[41]

K. ItoK. Kunisch and G. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var., 14 (2008), 517-539.   Google Scholar

[42]

K. ItoK. Kunisch and G. Peichl, Variational approach to shape derivative for a class of Bernoulli problem, J. Math. Anal. Appl., 314 (2006), 126-149.   Google Scholar

[43]

A. Laurain and H. Meftahi, Shape and parameter reconstruction for the Robin inverse problem, J. Inverse Ill-Posed Probl., 24 (2016), 643-662.   Google Scholar

[44]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Berlin Heidelberg: Springer-Verlag, 1971. Google Scholar

[45]

H. Meftahi, Stability analysis in the inverse Robin transmission problem, Math. Methods Appl. Sci., 40 (2016), 2505-2521.   Google Scholar

[46]

J. Neuberger, in Sobolev Gradients and Differential Equations (J-M. Morel and B. Teissier eds.), Lecture Notes in Mathematics. Springer: Berlin, 2010. Google Scholar

[47]

H. Meftahi and J.-P. Zolésio, Sensitivity analysis for some inverse problems in linear elasticity via minimax differentiability, Appl. Math. Model, 39 (2015), 1554-1576.   Google Scholar

[48]

O. Pironneau and B. Mohammadi, Applied Shape Optimization in Fluid, Oxford University Press Inc: New York, 2001. Google Scholar

[49]

J. F. T. Rabago, Shape Optimization for the Bernoulli Free Boundary Problem Via Céa's Classical Lagrange Method and Min-Max Differentiability of the Lagrangian, M. Sc. Thesis, University of the Philippines Baguio, Philippines, 2016. Google Scholar

[50]

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer, Berlin, Germany, 1991. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic Press, London, 1975. Google Scholar

[2]

H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 325 (1981), 105-144.   Google Scholar

[3]

H. Azegami, A solution to domain optimization problems, Trans of Japan Soc. of Mech. Engs., Ser. A, 60 (1994), 1479-1486 (in Japanese). Google Scholar

[4]

H. Azegami and Z. Q. Wu, Domain optimization analysis in linear elastic problems: approach using traction method, JSME Int J., Ser. A, 39 (1996), 272-278.   Google Scholar

[5]

H. Azegami, S. Kaizu, M. Shimoda and E. Katamine, Irregularity of shape optimization problems and an improvement technique, in Computer Aided Optimization Design of Structures V (S. Hernandez and C. A. Brebbia eds.), Computational Mechanics Publications, Southampton, (1997), 309-326. Google Scholar

[6]

H. Azegami and Z. Takeuchi, A smoothing method for shape optimization: traction method using the Robin condition, Int. J. Comp. Meth-Sing., 3 (2006), 21-33.   Google Scholar

[7]

H. AzegamiS. Fukumoto and T. Aoyama, Shape optimization of continua using nurbs as basis functions, Struct. Multidiscipl. Optimiz., 47 (2013), 247-258.   Google Scholar

[8]

H. AzegamiL. ZhouK. Umemura and N. Kondo, Shape optimization for a link mechanism, Struct. Multidiscipl. Optimiz., 48 (2013), 115-125.   Google Scholar

[9]

B. Abda, F. Bouchon, G. Peichl, M. Sayeh and R. Touzani, A new formulation for the Bernoulli problem, in Proceedings of the 5th International Conference on Inverse Problems, Control and Shape Optimization, (2010), 1-19. Google Scholar

[10]

J. Bacani, Methods of Shape Optimization in Free Boundary Problems, Ph. D. Thesis, Karl-Franzens-Universität Graz, Graz, Austria, 2013. Google Scholar

[11]

J. B. Bacani and G. H. Peichl, On the first-order shape derivative of the Kohn-Vogelius cost functional of the Bernoulli problem, Abstr. Appl. Anal., 2013 (2013), Article ID 384320, 19 pp. Google Scholar

[12]

Z. Belhachmi and H. Meftahi, Shape sensitivity analysis for an interface problem via minimax differentiability, Appl.Math. Comput., 219 (2013), 6828-6842.   Google Scholar

[13]

J. Céa, Numerical methods of shape optimal design, in Optimization of Distributed Parameter Structures 2 (E. J. Haug and J. Céa eds.), Sijthoff and Noordhoff, Alphen aan den Rijn, (1981), 1049-1088. Google Scholar

[14]

J. Céa, Conception optimale ou identification de formes, calcul rapide de la derivee dircetionelle de la fonction cout, Math. Mod. Numer. Anal., 20 (1986), 371-402.   Google Scholar

[15]

D. Chenais, On the existence of a solution in a domain identification problem, J. Math. Anal. Appl., (1975), 189-219.   Google Scholar

[16]

R. Correa and A. Seeger, Directional derivative of a minimax function, Nonlinear Anal., 9 (1985), 13-22.   Google Scholar

[17]

M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2$^{nd}$ ed., Adv. Des. Control 22, SIAM, Philadelphia, 2011. Google Scholar

[18]

M. C. Delfour and J.-P. Zolésio, Shape sensitivity analysis via min max differentiability, SIAM J. Control Optim., 26 (1988), 834-862.   Google Scholar

[19]

M. C. Delfour and J.-P. Zolésio, Velocity method and Lagrangian formulation for the computation of the shape Hessian, SIAM J. Control Optim., 29 (1991), 1414-1442.   Google Scholar

[20]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland Publishing Co., Amsterdam, 1976. Translated from the French, Studies in Mathematics and its Applications, Vol. 1. Google Scholar

[21]

K. Eppler and H. Harbrecht, On a Kohn-Vogelius like formulation of free boundary problems, Comput. Optim. Appl., 52 (2012), 69-85.   Google Scholar

[22]

K. Eppler and H. Harbrecht, Tracking Neumann data for stationary free boundary problems, SIAM J. Control Optim., 48 (2009), 2901-2916.   Google Scholar

[23]

K. Eppler and H. Harbrecht, Tracking the Dirichlet data in $L^2$ is an ill-posed problem, J. Optim. Theory Appl., 145 (2010), 17-35.   Google Scholar

[24]

K. Eppler and H. Harbrecht, Shape optimization for free boundary problems-analysis and numerics, in Constrained Optimization and Optimal Control for Partial Differential Equations, 160 (2012), 277-288. Google Scholar

[25]

L. C. Evans, Partial Differential Equations, American Mathematical Society, Providence, RI, USA, 1998. Google Scholar

[26]

M. Flucher and M. Rumpf, Bernoulli's free-boundary problem, qualitative theory and numerical approximation, J. Reine Angew. Math., 486 (2003), 165-204.   Google Scholar

[27]

P. Grisvard, Elliptic Problems in Non-smooth Domains, Pitman Publishing, Marshfield, Massachussetts, USA, 1985. Google Scholar

[28]

A. Friedman, Free boundary problems in science and technology, Notices of the AMS, 47 (2000), 854-861.   Google Scholar

[29]

Z. Gao and Y. Ma, Shape gradient of the dissipated energy functional in shape optimization for the viscous incompressible flow, Appl Numer Math., 58 (2008), 1720-1741.   Google Scholar

[30]

Z. GaoY. Ma and H. W. Zhuang, Shape Hessian for generalized Oseen flow by differentiability of a minimax: a Lagrangian approach, Czech. Math. J., 57 (2007), 987-1011.   Google Scholar

[31]

D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 1983. Google Scholar

[32]

J. Hadamard, Mémoire sur le probleme d’analyse relatif a l’équilibre des plaques élastiques, in Mémoire des savants étrangers, 33, 1907, Œuvres de Jacques Hadamard, editions du C. N. R. S., Paris, (1968), 515-641. Google Scholar

[33]

J. HaslingerK. ItoT. KozubekK. Kunisch and G. Peichl, On the shape derivative for problems of Bernoulli type, Interfaces Free Bound., 1 (2009), 317-330.   Google Scholar

[34]

J. HaslingerT. KozubekK. Kunisch and G. Peichl, Shape optimization and fictitious domain approach for solving free boundary problems of Bernoulli type, Comput. Optim. Appl., 26 (2003), 231-251.   Google Scholar

[35]

J. HaslingerT. KozubekK. Kunisch and G. Peichl, Fictitious domain methods in shape optimization with applications in free-boundary problems, Comput. Optim. Appl., 26 (2003), 231-251.   Google Scholar

[36]

J. HaslingerT. KozubekK. Kunisch and G. Peichl, An embedding domain approach for a class of 2-d shape optimization problems: mathematical analysis, J. Math. Anal. Appl., 290 (2004), 665-685.   Google Scholar

[37]

F. Hecht, New development in FreeFem++, J. Numer. Math., 20 (2012), 251-265.   Google Scholar

[38]

A. Henrot and A. Shangholian, Convexity of free boundaries with Bernoulli type boundary condition, Nonlinear Anal., 28 (1997), 815-823.   Google Scholar

[39]

M. H. Imam, Three dimensional shape optimization, Int. J. Num. Meth. Engrg., 18 (1982), 661-673.   Google Scholar

[40]

H. Kasumba, Shape optimization approaches to free-surface problems, Int. J. Numer. Meth. Fluids, 74 (2014), 818-845.   Google Scholar

[41]

K. ItoK. Kunisch and G. Peichl, Variational approach to shape derivatives, ESAIM Control Optim. Calc. Var., 14 (2008), 517-539.   Google Scholar

[42]

K. ItoK. Kunisch and G. Peichl, Variational approach to shape derivative for a class of Bernoulli problem, J. Math. Anal. Appl., 314 (2006), 126-149.   Google Scholar

[43]

A. Laurain and H. Meftahi, Shape and parameter reconstruction for the Robin inverse problem, J. Inverse Ill-Posed Probl., 24 (2016), 643-662.   Google Scholar

[44]

J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Berlin Heidelberg: Springer-Verlag, 1971. Google Scholar

[45]

H. Meftahi, Stability analysis in the inverse Robin transmission problem, Math. Methods Appl. Sci., 40 (2016), 2505-2521.   Google Scholar

[46]

J. Neuberger, in Sobolev Gradients and Differential Equations (J-M. Morel and B. Teissier eds.), Lecture Notes in Mathematics. Springer: Berlin, 2010. Google Scholar

[47]

H. Meftahi and J.-P. Zolésio, Sensitivity analysis for some inverse problems in linear elasticity via minimax differentiability, Appl. Math. Model, 39 (2015), 1554-1576.   Google Scholar

[48]

O. Pironneau and B. Mohammadi, Applied Shape Optimization in Fluid, Oxford University Press Inc: New York, 2001. Google Scholar

[49]

J. F. T. Rabago, Shape Optimization for the Bernoulli Free Boundary Problem Via Céa's Classical Lagrange Method and Min-Max Differentiability of the Lagrangian, M. Sc. Thesis, University of the Philippines Baguio, Philippines, 2016. Google Scholar

[50]

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization, Springer, Berlin, Germany, 1991. Google Scholar

Figure 1.  Initial and final shape of the annular domain $\Omega$
Figure 2.  Initial and final shape of the annular domain $\Omega$
Figure 3.  History of values of the cost functional $J$
Table 1.  Cost Values
Iter.Cost
(α = 0.001)
Cost
(α = 0.01)
1128.187510128.187510
20.198259950.36967179
30.061162570.00004442
40.000005120.00000004
Iter.Cost
(α = 0.001)
Cost
(α = 0.01)
1128.187510128.187510
20.198259950.36967179
30.061162570.00004442
40.000005120.00000004
[1]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[2]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[5]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[7]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[8]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[11]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[12]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[13]

M. S. Lee, H. G. Harno, B. S. Goh, K. H. Lim. On the bang-bang control approach via a component-wise line search strategy for unconstrained optimization. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 45-61. doi: 10.3934/naco.2020014

[14]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[15]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[18]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[19]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[20]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (119)
  • HTML views (186)
  • Cited by (4)

Other articles
by authors

[Back to Top]