November  2018, 17(6): 2751-2771. doi: 10.3934/cpaa.2018130

An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators

Department of Mathematics, Korea University, 1 Anam-dong, Sungbuk-gu, Seoul, 136-701, Republic of Korea

Received  July 2017 Revised  March 2018 Published  June 2018

Fund Project: The author was supported by the TJ Park Science Fellowship of POSCO TJ Park Foundation.

In this article we prove the existence and uniqueness of a (weak) solution
$u$
in
$L_p\left( (0, T); Λ_{γ+m}\right)$
to the Cauchy problem
$\begin{align}\notag&\frac{\partial u}{\partial t}(t, x) = ψ(t, i\nabla)u(t, x)+f(t, x), \;\;\;(t, x) ∈ (0, T) × {\bf{R}}^d \\& u(0, x) = 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;(1)\end{align}$
where
$d ∈ \mathbb{N}$
,
$p ∈ (1, ∞]$
,
$γ, m ∈ (0, ∞)$
,
$Λ_{γ+m}$
is the Lipschitz space on
${\bf{R}}^d$
whose order is
$γ+m$
,
$f ∈ L_p\left( (0, T) ; Λ_{γ} \right)$
, and
$ψ(t, i\nabla)$
is a time measurable pseudo-differential operator whose symbol is
$ψ(t, ξ)$
, i.e.
$ψ(t, i\nabla)u(t, x) = \mathcal{F}^{-1}[ψ(t, ξ){\mathcal{F}}\left[u(t, ·)\right]\left(ξ)\right](x), $
with the assumptions
$\begin{align*}\Re[ψ(t, ξ)] ≤ -ν|ξ|^{γ}, \end{align*}$
and
$\begin{align*}|D_{ξ}^{α}ψ(t, ξ)|≤ν^{-1}|ξ|^{γ-|α|}.\end{align*}$
Furthermore, we show
$\begin{align}\int_0^T \|u(t, ·)\|^p_{Λ_{γ+m}} dt ≤ N \int_0^T \|f(t, ·)\|^p_{Λ_{m}} dt, \;\;\;\;\;\;\;\;\;\;(2)\end{align}$
where
$N$
is a positive constant depending only on
$d$
,
$p$
,
$γ$
,
$ν$
,
$m$
, and
$T$
,
The unique solvability of equation (1) in
$L_p$
-Hölder space is also considered.More precisely, for any
$f ∈ L_p((0, T);C^{n+α})$
, there exists a unique solution
$u ∈ L_p((0, T);C^{γ+n+α}({\bf{R}}^d))$
to equation (1) and for this solution
$u$
,
$\begin{align}\int_0^T \|u(t, ·)\|^p_{C^{γ+n+α}}dt ≤N \int_0^T \|f(t, ·)\|^p_{C^{n+α}}dt, \;\;\;\;\;\;\;\;\;\;(3)\end{align}$
where
$n ∈ \mathbb{Z}_+$
,
$α ∈ (0, 1)$
, and
$γ+α \notin \mathbb{Z}_+$
.
Citation: Ildoo Kim. An $L_p$-Lipschitz theory for parabolic equations with time measurable pseudo-differential operators. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2751-2771. doi: 10.3934/cpaa.2018130
References:
[1]

H. Abels, Pseudodifferential and Singular Integral Operators: An Introduction with Applications, Walter de Gruyter, 2012.  Google Scholar

[2]

H. Dong and S. Kim, Partial schauder estimates for second-order elliptic and parabolic equations, Calculus of Variations and Partial Differential Equations, 40 (2011), 481-500.  doi: 10.1007/s00526-010-0348-9.  Google Scholar

[3]

H. Dong and S. Kim, Partial schauder estimates for second-order elliptic and parabolic equations: a revisit, arXiv: 1502.00886, 2015. doi: 10.1007/s00526-010-0348-9.  Google Scholar

[4]

L. Grafakos, Classical Fourier Analysis, volume 249, Springer, 2008.  Google Scholar

[5]

L. Grafakos, Modern Fourier Analysis, volume 250, Springer, 2009. doi: 10.1007/978-0-387-09434-2.  Google Scholar

[6]

L. Hörmander, The Analysis of Linear Partial Differential Operators III: Pseudo-differential Operators, volume 274, Springer Science & Business Media, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[7]

N. Jacob, Pseudo-Differential Operators & Markov Processes: Generators and Their Potential Theory, volume 2, Imperial College Press, 2002. doi: 10.1142/9781860949562.  Google Scholar

[8]

I. KimK.-H. Kim and S. Lim, Parabolic BMO estimates for pseudo-differential operators of arbitrary order, Journal of Mathematical Analysis and Applications, 427 (2015), 557-580.  doi: 10.1016/j.jmaa.2015.02.065.  Google Scholar

[9]

I. KimS. Lim and K.-H. Kim, An Lq(Lp)-theory for parabolic pseudo-differential equations: Calderón-Zygmund approach,, Potential Analysis, (2016), 1-21.  doi: 10.1007/s11118-016-9552-3.  Google Scholar

[10]

N. V. Krylov, The Calderón-Zygmund theorem and parabolic equations in $ {L_p}\left({\mathbb{R},{C^{2 + \alpha }}} \right) $-spaces, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1 (2002), 799-820.   Google Scholar

[11]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, volume 96, American Mathematical Society Providence, RI, 2008. doi: 10.1090/gsm/096.  Google Scholar

[12]

Y. Lin and S.Z. Lu, Pseudo-differential operators on Sobolev and Lipschitz spaces, Acta Mathematica Sinica, English Series, 16 (2010), 131-142.  doi: 10.1007/s10114-010-8109-4.  Google Scholar

[13]

L. Lorenzi, Optimal Schauder estimates for parabolic problems with data measurable with respect to time, SIAM Journal on Mathematical Analysis, 31 (2000), 588-615.  doi: 10.1137/S0036141098342842.  Google Scholar

[14]

R. Mikulevičius and H. Pragarauskas, On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces, Lithuanian Mathematical Journal, 32 (1992), 238-264.  doi: 10.1007/BF02450422.  Google Scholar

[15]

R. Mikulevicius and H. Pragarauskas, On the cauchy problem for integro-differential operators in hölder classes and the uniqueness of the martingale problem, Potential Analysis, 40 (2014), 539-563.  doi: 10.1007/s11118-013-9359-4.  Google Scholar

[16]

E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, volume 3, Princeton University Press, 1993.  Google Scholar

show all references

References:
[1]

H. Abels, Pseudodifferential and Singular Integral Operators: An Introduction with Applications, Walter de Gruyter, 2012.  Google Scholar

[2]

H. Dong and S. Kim, Partial schauder estimates for second-order elliptic and parabolic equations, Calculus of Variations and Partial Differential Equations, 40 (2011), 481-500.  doi: 10.1007/s00526-010-0348-9.  Google Scholar

[3]

H. Dong and S. Kim, Partial schauder estimates for second-order elliptic and parabolic equations: a revisit, arXiv: 1502.00886, 2015. doi: 10.1007/s00526-010-0348-9.  Google Scholar

[4]

L. Grafakos, Classical Fourier Analysis, volume 249, Springer, 2008.  Google Scholar

[5]

L. Grafakos, Modern Fourier Analysis, volume 250, Springer, 2009. doi: 10.1007/978-0-387-09434-2.  Google Scholar

[6]

L. Hörmander, The Analysis of Linear Partial Differential Operators III: Pseudo-differential Operators, volume 274, Springer Science & Business Media, 2007. doi: 10.1007/978-3-540-49938-1.  Google Scholar

[7]

N. Jacob, Pseudo-Differential Operators & Markov Processes: Generators and Their Potential Theory, volume 2, Imperial College Press, 2002. doi: 10.1142/9781860949562.  Google Scholar

[8]

I. KimK.-H. Kim and S. Lim, Parabolic BMO estimates for pseudo-differential operators of arbitrary order, Journal of Mathematical Analysis and Applications, 427 (2015), 557-580.  doi: 10.1016/j.jmaa.2015.02.065.  Google Scholar

[9]

I. KimS. Lim and K.-H. Kim, An Lq(Lp)-theory for parabolic pseudo-differential equations: Calderón-Zygmund approach,, Potential Analysis, (2016), 1-21.  doi: 10.1007/s11118-016-9552-3.  Google Scholar

[10]

N. V. Krylov, The Calderón-Zygmund theorem and parabolic equations in $ {L_p}\left({\mathbb{R},{C^{2 + \alpha }}} \right) $-spaces, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1 (2002), 799-820.   Google Scholar

[11]

N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, volume 96, American Mathematical Society Providence, RI, 2008. doi: 10.1090/gsm/096.  Google Scholar

[12]

Y. Lin and S.Z. Lu, Pseudo-differential operators on Sobolev and Lipschitz spaces, Acta Mathematica Sinica, English Series, 16 (2010), 131-142.  doi: 10.1007/s10114-010-8109-4.  Google Scholar

[13]

L. Lorenzi, Optimal Schauder estimates for parabolic problems with data measurable with respect to time, SIAM Journal on Mathematical Analysis, 31 (2000), 588-615.  doi: 10.1137/S0036141098342842.  Google Scholar

[14]

R. Mikulevičius and H. Pragarauskas, On the Cauchy problem for certain integro-differential operators in Sobolev and Hölder spaces, Lithuanian Mathematical Journal, 32 (1992), 238-264.  doi: 10.1007/BF02450422.  Google Scholar

[15]

R. Mikulevicius and H. Pragarauskas, On the cauchy problem for integro-differential operators in hölder classes and the uniqueness of the martingale problem, Potential Analysis, 40 (2014), 539-563.  doi: 10.1007/s11118-013-9359-4.  Google Scholar

[16]

E. M. Stein and T. S. Murphy, Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, volume 3, Princeton University Press, 1993.  Google Scholar

[1]

Liang Huang, Jiao Chen. The boundedness of multi-linear and multi-parameter pseudo-differential operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020291

[2]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[3]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[4]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[5]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[6]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[7]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[8]

Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020391

[9]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[10]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[11]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[14]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[15]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[16]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[17]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[18]

Patrick Martinez, Judith Vancostenoble. Lipschitz stability for the growth rate coefficients in a nonlinear Fisher-KPP equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 695-721. doi: 10.3934/dcdss.2020362

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Tingting Wu, Li Liu, Lanqiang Li, Shixin Zhu. Repeated-root constacyclic codes of length $ 6lp^s $. Advances in Mathematics of Communications, 2021, 15 (1) : 167-189. doi: 10.3934/amc.2020051

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (87)
  • HTML views (134)
  • Cited by (0)

Other articles
by authors

[Back to Top]