November  2018, 17(6): 2845-2854. doi: 10.3934/cpaa.2018134

Unbounded and blow-up solutions for a delay logistic equation with positive feedback

1. 

University of Pannonia, Veszprém, Hungary

2. 

Shimane University, Matsue, Japan

3. 

University of Oxford, Oxford, United Kingdom

4. 

University of Szeged, Szeged, Hungary

* Corresponding author

Received  September 2017 Revised  January 2018 Published  June 2018

We study bounded, unbounded and blow-up solutions of a delay logistic equation without assuming the dominance of the instantaneous feedback. It is shown that there can exist an exponential (thus unbounded) solution for the nonlinear problem, and in this case the positive equilibrium is always unstable. We obtain a necessary and sufficient condition for the existence of blow-up solutions, and characterize a wide class of such solutions. There is a parameter set such that the non-trivial equilibrium is locally stable but not globally stable due to the co-existence with blow-up solutions.

Citation: István Győri, Yukihiko Nakata, Gergely Röst. Unbounded and blow-up solutions for a delay logistic equation with positive feedback. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2845-2854. doi: 10.3934/cpaa.2018134
References:
[1]

J. A. D. ApplebyI. Győri and D. W. Reynolds, History-dependent decay rates for a logistic equation with infinite delay, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 23-44.  doi: 10.1017/S0308210510000016.

[2]

B. BánhelyiT. CsendesT. Krisztin and A. Neumaier, Global attractivity of the zero solution for Wright's equation, SIAM Journal on Applied Dynamical Systems, 13 (2014), 537-563.  doi: 10.1137/120904226.

[3]

O. Diekmann, S. A. van Gils, S. M. V. Lunel and H. O. Walther, Delay Equations Functional, Complex and Nonlinear Analysis, Springer Verlag, 1991. doi: 10.1007/978-1-4612-4206-2.

[4]

T. Faria and E. Liz, Boundedness and asymptotic stability for delayed equations of logistic type, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1057-1073.  doi: 10.1017/S030821050000281X.

[5]

E. Liz and G. Röst, Dichotomy results for delay differential equations with negative Schwarzian, Nonlinear Analysis: Real World Applications, 11 (2010), 1422-1430.  doi: 10.1016/j.nonrwa.2009.02.030.

[6]

K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992. doi: 10.1007/978-94-015-7920-9.

[7]

I. Győri, A new approach to the global asymptotic stability problem in a delay Lotka-Volterra differential equation, Mathematical and Computer Modelling, 31 (2000), 9-28.  doi: 10.1016/S0895-7177(00)00043-1.

[8]

I. Győri and F. Hartung, Fundamental solution and asymptotic stability of linear delay differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, 13 (2006), 261-288. 

[9]

I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.

[10]

X. He, Global stability in nonautonomous Lotka-Volterra systems of "pure-delay type", Differential and Integral Equations, 11 (1998), 293-310. 

[11]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993.

[12]

S. M. Lenhart and C. C. Travis, Global stability of a biological model with time delay, Proc. Amer. Math. Sot., 96 (1986), 75-78.  doi: 10.2307/2045656.

[13]

H. Li and R. Yuan, An affirmative answer to the extended Gopalsamy and Liu's conjecture on the global asymptotic stability in a population model, Nonlinear Anal. Real World Appl., 11 (2010), 3295-3308.  doi: 10.1016/j.nonrwa.2009.11.022.

[14]

S. Ruan, Delay differential equations in single species dynamics, In Delay Differential Equations and Applications, Springer, (2006), 477-517. doi: 10.1007/1-4020-3647-7_11.

[15]

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Function, Wiley, New York, 1989.

[16]

Z. Teng, Permanence and stability in non-autonomous logistic systems with infinite delay, Dyn. Syst., 17 (2002), 187-202.  doi: 10.1080/14689360110102312.

[17]

J. B. van den Berg and J. Jaquette, A proof of Wright's conjecture arXiv: 1704.00029v1 [mathDS] 31 Mar 2017. doi: 10.1016/j.jde.2018.02.018.

show all references

References:
[1]

J. A. D. ApplebyI. Győri and D. W. Reynolds, History-dependent decay rates for a logistic equation with infinite delay, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 23-44.  doi: 10.1017/S0308210510000016.

[2]

B. BánhelyiT. CsendesT. Krisztin and A. Neumaier, Global attractivity of the zero solution for Wright's equation, SIAM Journal on Applied Dynamical Systems, 13 (2014), 537-563.  doi: 10.1137/120904226.

[3]

O. Diekmann, S. A. van Gils, S. M. V. Lunel and H. O. Walther, Delay Equations Functional, Complex and Nonlinear Analysis, Springer Verlag, 1991. doi: 10.1007/978-1-4612-4206-2.

[4]

T. Faria and E. Liz, Boundedness and asymptotic stability for delayed equations of logistic type, Proc. Roy. Soc. Edinburgh Sect. A, 133 (2003), 1057-1073.  doi: 10.1017/S030821050000281X.

[5]

E. Liz and G. Röst, Dichotomy results for delay differential equations with negative Schwarzian, Nonlinear Analysis: Real World Applications, 11 (2010), 1422-1430.  doi: 10.1016/j.nonrwa.2009.02.030.

[6]

K. Gopalsamy, Stability and Oscillation in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992. doi: 10.1007/978-94-015-7920-9.

[7]

I. Győri, A new approach to the global asymptotic stability problem in a delay Lotka-Volterra differential equation, Mathematical and Computer Modelling, 31 (2000), 9-28.  doi: 10.1016/S0895-7177(00)00043-1.

[8]

I. Győri and F. Hartung, Fundamental solution and asymptotic stability of linear delay differential equations, Dynamics of Continuous, Discrete and Impulsive Systems, 13 (2006), 261-288. 

[9]

I. Győri and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Clarendon Press, Oxford, 1991.

[10]

X. He, Global stability in nonautonomous Lotka-Volterra systems of "pure-delay type", Differential and Integral Equations, 11 (1998), 293-310. 

[11]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, San Diego, 1993.

[12]

S. M. Lenhart and C. C. Travis, Global stability of a biological model with time delay, Proc. Amer. Math. Sot., 96 (1986), 75-78.  doi: 10.2307/2045656.

[13]

H. Li and R. Yuan, An affirmative answer to the extended Gopalsamy and Liu's conjecture on the global asymptotic stability in a population model, Nonlinear Anal. Real World Appl., 11 (2010), 3295-3308.  doi: 10.1016/j.nonrwa.2009.11.022.

[14]

S. Ruan, Delay differential equations in single species dynamics, In Delay Differential Equations and Applications, Springer, (2006), 477-517. doi: 10.1007/1-4020-3647-7_11.

[15]

G. Stépán, Retarded Dynamical Systems: Stability and Characteristic Function, Wiley, New York, 1989.

[16]

Z. Teng, Permanence and stability in non-autonomous logistic systems with infinite delay, Dyn. Syst., 17 (2002), 187-202.  doi: 10.1080/14689360110102312.

[17]

J. B. van den Berg and J. Jaquette, A proof of Wright's conjecture arXiv: 1704.00029v1 [mathDS] 31 Mar 2017. doi: 10.1016/j.jde.2018.02.018.

Figure 2.1.  Stability region for the positive equilibrium in the $(\alpha,r)$-parameter plane. The shaded region is the stability region given by (2.1) and (2.2). The positive equilibrium is globally stable for $\alpha\le-1$ and is unstable above the stability boundary. Exponential solutions exist on the denoted curve. Blow-up solutions exist for $\alpha>0$, hence we can observe a region where the positive equilibrium is locally stable yet blow-up solutions also exist
[1]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[2]

Alberto Bressan, Massimo Fonte. On the blow-up for a discrete Boltzmann equation in the plane. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 1-12. doi: 10.3934/dcds.2005.13.1

[3]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[4]

Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689

[5]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[6]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[7]

Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147

[8]

Yohei Fujishima. Blow-up set for a superlinear heat equation and pointedness of the initial data. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4617-4645. doi: 10.3934/dcds.2014.34.4617

[9]

Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639

[10]

Pierre Garnier. Damping to prevent the blow-up of the korteweg-de vries equation. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1455-1470. doi: 10.3934/cpaa.2017069

[11]

Long Wei, Zhijun Qiao, Yang Wang, Shouming Zhou. Conserved quantities, global existence and blow-up for a generalized CH equation. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1733-1748. doi: 10.3934/dcds.2017072

[12]

Lili Du, Zheng-An Yao. Localization of blow-up points for a nonlinear nonlocal porous medium equation. Communications on Pure and Applied Analysis, 2007, 6 (1) : 183-190. doi: 10.3934/cpaa.2007.6.183

[13]

Takiko Sasaki. Convergence of a blow-up curve for a semilinear wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1133-1143. doi: 10.3934/dcdss.2020388

[14]

Donghao Li, Hongwei Zhang, Shuo Liu, Qingiyng Hu. Blow-up of solutions to a viscoelastic wave equation with nonlocal damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022009

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure and Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1

[17]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[18]

P. Dormayer, A. F. Ivanov. Symmetric periodic solutions of a delay differential equation. Conference Publications, 1998, 1998 (Special) : 220-230. doi: 10.3934/proc.1998.1998.220

[19]

Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139

[20]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (189)
  • HTML views (164)
  • Cited by (2)

Other articles
by authors

[Back to Top]