• Previous Article
    Constraint minimizers of perturbed gross-pitaevskii energy functionals in $\mathbb{R}^N$
  • CPAA Home
  • This Issue
  • Next Article
    An N-barrier maximum principle for autonomous systems of $n$ species and its application to problems arising from population dynamics
January  2019, 18(1): 51-64. doi: 10.3934/cpaa.2019004

A positive solution for an asymptotically cubic quasilinear Schrödinger equation

School of Mathematical Sciences, Dalian University of Technology, 116024 Dalian, China

Received  August 2017 Revised  April 2018 Published  August 2018

Fund Project: This project is supported by National Natural Science Foundation of China (Grant No. 11601057) and the Fundamental Research Funds for the Central Universities (Grant. DUT18LK05).

We consider the following quasilinear Schrödinger equation
$ - \Delta u + V(x)u - \Delta ({u^2})u = q(x)g(u),\;\;\;\;x \in {\mathbb{R}^N}, $
where
$N≥ 1$
,
$0 < q(x)≤ \lim_{|x|\to∞}q(x)$
,
$g∈ C(\mathbb{R}^+, \mathbb{R})$
and
$g(u)/u^3 \to 1$
, as
$u \to ∞.$
We establish the existence of a positive solution to this problem by using the method developed in Szulkin and Weth [27,28].
Citation: Xiang-Dong Fang. A positive solution for an asymptotically cubic quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (1) : 51-64. doi: 10.3934/cpaa.2019004
References:
[1]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonl. Anal., 75 (2012), 819-833.  doi: 10.1016/j.na.2011.09.015.  Google Scholar

[2]

S. AdachiM. Shibata and T. Watanabe, Global uniqueness results for ground states for a class of quasilinear elliptic equations, Kodai Math. J., 40 (2017), 117-142.  doi: 10.2996/kmj/1490083227.  Google Scholar

[3]

A. AmbrosettiG. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $\mathbb{R}^N$, J. Funct. Anal., 254 (2008), 2816-2845.  doi: 10.1016/j.jfa.2007.11.013.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[5]

P. C. CarriãoR. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in $\mathbb{R}^N$ via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165-183.  doi: 10.1016/j.jmaa.2015.02.060.  Google Scholar

[6]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var., 17 (2003), 257-281.   Google Scholar

[7] K. C. Chang, Methods in Nonlinear Analysis, Springer-Verlag, Berlin, 2005.   Google Scholar
[8]

M. Clapp and L. A. Maia, A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Diff. Eq., 260 (2016), 3173-3192.  doi: 10.1016/j.jde.2015.09.059.  Google Scholar

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonl. Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[10]

D. G. Costa and H. Tehrani, On a class of asymptotically linear elliptic problems in $\mathbb{R}^N$, J. Diff. Eq., 173 (2001), 470-494.  doi: 10.1006/jdeq.2000.3944.  Google Scholar

[11]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Comm. Pure Appl. Anal., 9 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[12]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var., 38 (2010), 275-315.  doi: 10.1007/s00526-009-0286-6.  Google Scholar

[13]

G. Evéquoz and T. Weth, Entire solutions to nonlinear scalar field equations with indefinite linear part, Adv. Nonlinear Stud., 12 (2012), 281-314.  doi: 10.1515/ans-2012-0206.  Google Scholar

[14]

X. D. Fang and Z. Q. Han, Existence of a Ground State Solution for a Quasilinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 941-950.  doi: 10.1515/ans-2014-0407.  Google Scholar

[15]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Diff. Eq., 254 (2013), 2015-2032.  doi: 10.1016/j.jde.2012.11.017.  Google Scholar

[16]

L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbb{R}^N$ autonomous at infinity, ESAIM Control Optim. Calc. Var., 7 (2002), 597-614.  doi: 10.1051/cocv:2002068.  Google Scholar

[17]

R. Lehrer and L. A. Maia, Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266 (2014), 213-246.  doi: 10.1016/j.jfa.2013.09.002.  Google Scholar

[18]

R. LehrerL. A. Maia and R. Ruviaro, Bound states of a nonhomogeneous nonlinear Schrödinger equation with non symmetric potential, Nonlinear Diff. Equ. Appl., 22 (2015), 651-672.  doi: 10.1007/s00030-014-0299-5.  Google Scholar

[19]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Diff. Eq., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[20]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[21]

X. Q. LiuY. S. Huang and J. Q. Liu, Sign-changing solutions for an asymptotically linear Schrödinger equation with deepening potential well, Adv. Diff. Eq., 16 (2011), 1-30.   Google Scholar

[22]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var., 14 (2002), 329-344.  doi: 10.1007/s005260100105.  Google Scholar

[23]

A. Selvitella, Nondegeneracy of the ground state for quasilinear Schrödinger equations, Calc. Var., 53 (2015), 349-364.  doi: 10.1007/s00526-014-0751-8.  Google Scholar

[24] M. Struwe, Variational Methods, second ed., Springer-Verlag, Berlin, 1996.  doi: 10.1007/978-3-662-03212-1.  Google Scholar
[25]

C. A. Stuart, An introduction to elliptic equation on $\mathbb{R}^N$, in Nonlinear Functional Analysis and Applications to Differential Equations (A. Ambrosetti, K.-C. Chang and I. Ekeland eds.), World Scientific, Singapore, 1998.  Google Scholar

[26]

C. A. Stuart and H. S. Zhou, Applying the mountain pass theorem to an asymptotically linear elliptic equation on $\mathbb{R}^N$, Comm. Partial Diff. Eq., 24 (1999), 1731-1758.  doi: 10.1080/03605309908821481.  Google Scholar

[27]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.  Google Scholar

[28]

A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, Int. Press, (2010), 597-632.  Google Scholar

[29]

M. Willem, Minimax Theorems, in Progress in Nonlinear Differential Equations and Their Applications, 24 , Birkhäuser Boston, Inc., Boston, (1996), ⅹ-162. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[30]

Y. J. Wang and W. M. Zou, Bound states to critical quasilinear Schrödinger equations, Nonl. Diff. Eq. Appl., 19 (2012), 19-47.  doi: 10.1007/s00030-011-0116-3.  Google Scholar

[31]

M. B. Yang and Y. H. Ding, Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in $\mathbb{R}^N$, Ann. Mat. Pura Appl., 192 (2013), 783-804.  doi: 10.1007/s10231-011-0246-6.  Google Scholar

show all references

References:
[1]

S. Adachi and T. Watanabe, Uniqueness of the ground state solutions of quasilinear Schrödinger equations, Nonl. Anal., 75 (2012), 819-833.  doi: 10.1016/j.na.2011.09.015.  Google Scholar

[2]

S. AdachiM. Shibata and T. Watanabe, Global uniqueness results for ground states for a class of quasilinear elliptic equations, Kodai Math. J., 40 (2017), 117-142.  doi: 10.2996/kmj/1490083227.  Google Scholar

[3]

A. AmbrosettiG. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $\mathbb{R}^N$, J. Funct. Anal., 254 (2008), 2816-2845.  doi: 10.1016/j.jfa.2007.11.013.  Google Scholar

[4]

H. Berestycki and P. L. Lions, Nonlinear scalar field equations, Ⅰ. Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345.  doi: 10.1007/BF00250555.  Google Scholar

[5]

P. C. CarriãoR. Lehrer and O. H. Miyagaki, Existence of solutions to a class of asymptotically linear Schrödinger equations in $\mathbb{R}^N$ via the Pohozaev manifold, J. Math. Anal. Appl., 428 (2015), 165-183.  doi: 10.1016/j.jmaa.2015.02.060.  Google Scholar

[6]

G. Cerami and D. Passaseo, The effect of concentrating potentials in some singularly perturbed problems, Calc. Var., 17 (2003), 257-281.   Google Scholar

[7] K. C. Chang, Methods in Nonlinear Analysis, Springer-Verlag, Berlin, 2005.   Google Scholar
[8]

M. Clapp and L. A. Maia, A positive bound state for an asymptotically linear or superlinear Schrödinger equation, J. Diff. Eq., 260 (2016), 3173-3192.  doi: 10.1016/j.jde.2015.09.059.  Google Scholar

[9]

M. Colin and L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonl. Anal., 56 (2004), 213-226.  doi: 10.1016/j.na.2003.09.008.  Google Scholar

[10]

D. G. Costa and H. Tehrani, On a class of asymptotically linear elliptic problems in $\mathbb{R}^N$, J. Diff. Eq., 173 (2001), 470-494.  doi: 10.1006/jdeq.2000.3944.  Google Scholar

[11]

J. M. do Ó and U. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Comm. Pure Appl. Anal., 9 (2009), 621-644.  doi: 10.3934/cpaa.2009.8.621.  Google Scholar

[12]

J. M. do Ó and U. Severo, Solitary waves for a class of quasilinear Schrödinger equations in dimension two, Calc. Var., 38 (2010), 275-315.  doi: 10.1007/s00526-009-0286-6.  Google Scholar

[13]

G. Evéquoz and T. Weth, Entire solutions to nonlinear scalar field equations with indefinite linear part, Adv. Nonlinear Stud., 12 (2012), 281-314.  doi: 10.1515/ans-2012-0206.  Google Scholar

[14]

X. D. Fang and Z. Q. Han, Existence of a Ground State Solution for a Quasilinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 941-950.  doi: 10.1515/ans-2014-0407.  Google Scholar

[15]

X. D. Fang and A. Szulkin, Multiple solutions for a quasilinear Schrödinger equation, J. Diff. Eq., 254 (2013), 2015-2032.  doi: 10.1016/j.jde.2012.11.017.  Google Scholar

[16]

L. Jeanjean and K. Tanaka, A positive solution for an asymptotically linear elliptic problem on $\mathbb{R}^N$ autonomous at infinity, ESAIM Control Optim. Calc. Var., 7 (2002), 597-614.  doi: 10.1051/cocv:2002068.  Google Scholar

[17]

R. Lehrer and L. A. Maia, Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266 (2014), 213-246.  doi: 10.1016/j.jfa.2013.09.002.  Google Scholar

[18]

R. LehrerL. A. Maia and R. Ruviaro, Bound states of a nonhomogeneous nonlinear Schrödinger equation with non symmetric potential, Nonlinear Diff. Equ. Appl., 22 (2015), 651-672.  doi: 10.1007/s00030-014-0299-5.  Google Scholar

[19]

J. Q. LiuY. Q. Wang and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Diff. Eq., 187 (2003), 473-493.  doi: 10.1016/S0022-0396(02)00064-5.  Google Scholar

[20]

J. Q. Liu and Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅰ, Proc. Amer. Math. Soc., 131 (2003), 441-448.  doi: 10.1090/S0002-9939-02-06783-7.  Google Scholar

[21]

X. Q. LiuY. S. Huang and J. Q. Liu, Sign-changing solutions for an asymptotically linear Schrödinger equation with deepening potential well, Adv. Diff. Eq., 16 (2011), 1-30.   Google Scholar

[22]

M. PoppenbergK. Schmitt and Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var., 14 (2002), 329-344.  doi: 10.1007/s005260100105.  Google Scholar

[23]

A. Selvitella, Nondegeneracy of the ground state for quasilinear Schrödinger equations, Calc. Var., 53 (2015), 349-364.  doi: 10.1007/s00526-014-0751-8.  Google Scholar

[24] M. Struwe, Variational Methods, second ed., Springer-Verlag, Berlin, 1996.  doi: 10.1007/978-3-662-03212-1.  Google Scholar
[25]

C. A. Stuart, An introduction to elliptic equation on $\mathbb{R}^N$, in Nonlinear Functional Analysis and Applications to Differential Equations (A. Ambrosetti, K.-C. Chang and I. Ekeland eds.), World Scientific, Singapore, 1998.  Google Scholar

[26]

C. A. Stuart and H. S. Zhou, Applying the mountain pass theorem to an asymptotically linear elliptic equation on $\mathbb{R}^N$, Comm. Partial Diff. Eq., 24 (1999), 1731-1758.  doi: 10.1080/03605309908821481.  Google Scholar

[27]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.  Google Scholar

[28]

A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, Int. Press, (2010), 597-632.  Google Scholar

[29]

M. Willem, Minimax Theorems, in Progress in Nonlinear Differential Equations and Their Applications, 24 , Birkhäuser Boston, Inc., Boston, (1996), ⅹ-162. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[30]

Y. J. Wang and W. M. Zou, Bound states to critical quasilinear Schrödinger equations, Nonl. Diff. Eq. Appl., 19 (2012), 19-47.  doi: 10.1007/s00030-011-0116-3.  Google Scholar

[31]

M. B. Yang and Y. H. Ding, Existence of semiclassical states for a quasilinear Schrödinger equation with critical exponent in $\mathbb{R}^N$, Ann. Mat. Pura Appl., 192 (2013), 783-804.  doi: 10.1007/s10231-011-0246-6.  Google Scholar

[1]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[2]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[3]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[6]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[7]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[8]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[9]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[10]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[11]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[17]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[18]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[19]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[20]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (157)
  • HTML views (166)
  • Cited by (1)

Other articles
by authors

[Back to Top]