-
Previous Article
Bounded state solutions of Kirchhoff type problems with a critical exponent in high dimension
- CPAA Home
- This Issue
-
Next Article
Multiplicity of solutions for a nonhomogeneous quasilinear elliptic problem with critical growth
Boundary regularity for a degenerate elliptic equation with mixed boundary conditions
Department of Mathematics and Computer Sciences, Cheikh Anta Diop University of Dakar (UCAD), B.P. 5005 Dakar-Fann, Senegal |
We consider a function $U$ satisfying a degenerate elliptic equation on $\mathbb{R}_ + ^{N + 1}: = (0, +∞)×{\mathbb{R}^N}$ with mixed Dirichlet-Neumann boundary conditions. The Neumann condition is prescribed on a bounded domain $\Omega\subset{\mathbb{R}^N}$ of class $C^{1, 1}$, whereas the Dirichlet data is on the exterior of $\Omega$. We prove Hölder regularity estimates of $\frac{U}{d_\Omega^s}$, where $d_\Omega$ is a distance function defined as $d_\Omega(z): = \text{dist}(z, {\mathbb{R}^N}\setminus\Omega)$, for $z∈\overline{\mathbb{R}_ + ^{N + 1}}$. The degenerate elliptic equation arises from the Caffarelli-Silvestre extension of the Dirichlet problem for the fractional Laplacian. Our proof relies on compactness and blow-up analysis arguments.
References:
[1] |
J. Björn,
Regularity at infinity fot a mixed problem for degenerate elliptic operators in a half-cynlider, Math. Scand., 81 (1997), 101-126.
doi: 10.7146/math.scand.a-12868. |
[2] |
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Springer International Publishing, Switzerland, 2016.
doi: 10.1007/978-3-319-28739-3. |
[3] |
X. Cabré and Y. Sire,
Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001. |
[4] |
L. A. Caffarelli, S. Salsa and L. Silvestre,
Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.
doi: 10.1007/s00222-007-0086-6. |
[5] |
L. A. Caffarelli and L. Silvestre,
An extension problem related to the fractional laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[6] |
M. Costabel, M. Dauge and R. Duduchava,
Asymptotics without logarithmic terms for crack problems, Comm. Partial Differential Equations, 28 (2003), 869-926.
doi: 10.1081/PDE-120021180. |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[8] |
E. Fabes, D. Jerison and C. Kenig,
The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), 32 (1982), 151-182.
doi: 10.5802/aif.883. |
[9] |
E. Fabes, C. Kenig and R. Serapioni,
The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.
doi: 10.1080/03605308208820218. |
[10] |
V. I. Fabrikant,
Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer Academic Publishers, 1991,451 pages. |
[11] |
M. M. Fall, Regularity estimates for nonlocal Schrödinger equations, preprint, arXiv: 1711.02206. |
[12] |
M. M. Fall and T. Weth,
Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.
doi: 10.1016/j.jfa.2012.06.018. |
[13] |
G. Grubb,
Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators, Anal. PDE, 7 (2014), 1649-1682.
doi: 10.2140/apde.2014.7.1649. |
[14] |
G. Grubb,
Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators, Adv. Math., 268 (2015), 478-528.
doi: 10.1016/j.aim.2014.09.018. |
[15] |
G. Grubb,
Spectral results for mixed problems and fractional elliptic operators, J. Math. Anal. Appl., 421 (2015), 1616-1634.
doi: 10.1016/j.jmaa.2014.07.081. |
[16] |
T. Jin, Y. Y. Li and J. Xiong,
On a fractional nirenberg problem part i: blow up analysis and compactness solutions, J. Eur. Math. Soc (JEMS), 16 (2014), 1111-1171.
doi: 10.4171/JEMS/456. |
[17] |
M. Kassmann and W. R. Madych,
Difference quotients and elliptic mixed boundary value problems of second order, Indiana Univ. Math. J., 56 (2007), 1047-1082.
doi: 10.1512/iumj.2007.56.2836. |
[18] |
S. Kim and K. Lee,
Hölder estimates for singular nonlocal parabolic equations, J. of Funct. Anal., 261 (2011), 3482-3518.
doi: 10.1016/j.jfa.2011.08.010. |
[19] |
Serge Levendorskii, Degenerate Elliptic Equations, Springer Netherlands, 1993.
doi: 10.1007/978-94-017-1215-6. |
[20] |
P. L. Mills and M. P. Dudukovi${\rm{\tilde c}}$,
Solution of mixed boundary value problems by integral equations and methods of weighted residuals with application to heat conduction and diffusion-reaction systems, SIAM Journal on Applied Mathematics, 44 (1984), 1076-1091.
doi: 10.1137/0144077. |
[21] |
B. Muckenhoupt,
Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.
doi: 10.2307/1995882. |
[22] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[23] |
X. Ros-Oton and J. Serra,
Boundary regularity for fully nonlinear integro-differential equations, Duke Mathematical Journal, 165 (2016), 2079-2154.
doi: 10.1215/00127094-3476700. |
[24] |
X. Ros-Oton and J. Serra,
Regularity theory for general stable operators, Journal of Differential Equations, 260 (2016), 8675-8715.
doi: 10.1016/j.jde.2016.02.033. |
[25] |
G. Savaré,
Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22 (1997), 869-899.
doi: 10.1080/03605309708821287. |
[26] |
J. Serra,
Regularity for fully nonlinear nonlocal parabolic equations with rough kernels, Calc. Var. Partial Differential Equations, 54 (2015), 615-629.
doi: 10.1007/s00526-014-0798-6. |
[27] |
L. Silvestre,
On the differentiability of the solution to an equation with drift and fractional diffusion, Indiana University Mathematical Journal, 61 (2012), 557-584.
doi: 10.1512/iumj.2012.61.4568. |
[28] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[29] |
S. Zaremba, Sur un problème mixte relatif à l'équation de Laplace, (french) [On a mixed problem related to the Laplace equation], Bulletin international de l'Académie des Sciences de Cracovie. Classe des Sciences Mathématiques et Naturelles, Serie A: Sciences mathématiques (French), 313-344. |
show all references
References:
[1] |
J. Björn,
Regularity at infinity fot a mixed problem for degenerate elliptic operators in a half-cynlider, Math. Scand., 81 (1997), 101-126.
doi: 10.7146/math.scand.a-12868. |
[2] |
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Springer International Publishing, Switzerland, 2016.
doi: 10.1007/978-3-319-28739-3. |
[3] |
X. Cabré and Y. Sire,
Nonlinear equations for fractional Laplacians Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.
doi: 10.1016/j.anihpc.2013.02.001. |
[4] |
L. A. Caffarelli, S. Salsa and L. Silvestre,
Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.
doi: 10.1007/s00222-007-0086-6. |
[5] |
L. A. Caffarelli and L. Silvestre,
An extension problem related to the fractional laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[6] |
M. Costabel, M. Dauge and R. Duduchava,
Asymptotics without logarithmic terms for crack problems, Comm. Partial Differential Equations, 28 (2003), 869-926.
doi: 10.1081/PDE-120021180. |
[7] |
E. Di Nezza, G. Palatucci and E. Valdinoci,
Hitchhiker's guide to the fractional sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[8] |
E. Fabes, D. Jerison and C. Kenig,
The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), 32 (1982), 151-182.
doi: 10.5802/aif.883. |
[9] |
E. Fabes, C. Kenig and R. Serapioni,
The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations, 7 (1982), 77-116.
doi: 10.1080/03605308208820218. |
[10] |
V. I. Fabrikant,
Mixed Boundary Value Problems of Potential Theory and Their Applications in Engineering, Kluwer Academic Publishers, 1991,451 pages. |
[11] |
M. M. Fall, Regularity estimates for nonlocal Schrödinger equations, preprint, arXiv: 1711.02206. |
[12] |
M. M. Fall and T. Weth,
Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal., 263 (2012), 2205-2227.
doi: 10.1016/j.jfa.2012.06.018. |
[13] |
G. Grubb,
Local and nonlocal boundary conditions for μ-transmission and fractional elliptic pseudodifferential operators, Anal. PDE, 7 (2014), 1649-1682.
doi: 10.2140/apde.2014.7.1649. |
[14] |
G. Grubb,
Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators, Adv. Math., 268 (2015), 478-528.
doi: 10.1016/j.aim.2014.09.018. |
[15] |
G. Grubb,
Spectral results for mixed problems and fractional elliptic operators, J. Math. Anal. Appl., 421 (2015), 1616-1634.
doi: 10.1016/j.jmaa.2014.07.081. |
[16] |
T. Jin, Y. Y. Li and J. Xiong,
On a fractional nirenberg problem part i: blow up analysis and compactness solutions, J. Eur. Math. Soc (JEMS), 16 (2014), 1111-1171.
doi: 10.4171/JEMS/456. |
[17] |
M. Kassmann and W. R. Madych,
Difference quotients and elliptic mixed boundary value problems of second order, Indiana Univ. Math. J., 56 (2007), 1047-1082.
doi: 10.1512/iumj.2007.56.2836. |
[18] |
S. Kim and K. Lee,
Hölder estimates for singular nonlocal parabolic equations, J. of Funct. Anal., 261 (2011), 3482-3518.
doi: 10.1016/j.jfa.2011.08.010. |
[19] |
Serge Levendorskii, Degenerate Elliptic Equations, Springer Netherlands, 1993.
doi: 10.1007/978-94-017-1215-6. |
[20] |
P. L. Mills and M. P. Dudukovi${\rm{\tilde c}}$,
Solution of mixed boundary value problems by integral equations and methods of weighted residuals with application to heat conduction and diffusion-reaction systems, SIAM Journal on Applied Mathematics, 44 (1984), 1076-1091.
doi: 10.1137/0144077. |
[21] |
B. Muckenhoupt,
Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.
doi: 10.2307/1995882. |
[22] |
X. Ros-Oton and J. Serra,
The Dirichlet problem for the fractional Laplacian: regularity up to the boundary, J. Math. Pures Appl., 101 (2014), 275-302.
doi: 10.1016/j.matpur.2013.06.003. |
[23] |
X. Ros-Oton and J. Serra,
Boundary regularity for fully nonlinear integro-differential equations, Duke Mathematical Journal, 165 (2016), 2079-2154.
doi: 10.1215/00127094-3476700. |
[24] |
X. Ros-Oton and J. Serra,
Regularity theory for general stable operators, Journal of Differential Equations, 260 (2016), 8675-8715.
doi: 10.1016/j.jde.2016.02.033. |
[25] |
G. Savaré,
Regularity and perturbation results for mixed second order elliptic problems, Comm. Partial Differential Equations, 22 (1997), 869-899.
doi: 10.1080/03605309708821287. |
[26] |
J. Serra,
Regularity for fully nonlinear nonlocal parabolic equations with rough kernels, Calc. Var. Partial Differential Equations, 54 (2015), 615-629.
doi: 10.1007/s00526-014-0798-6. |
[27] |
L. Silvestre,
On the differentiability of the solution to an equation with drift and fractional diffusion, Indiana University Mathematical Journal, 61 (2012), 557-584.
doi: 10.1512/iumj.2012.61.4568. |
[28] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[29] |
S. Zaremba, Sur un problème mixte relatif à l'équation de Laplace, (french) [On a mixed problem related to the Laplace equation], Bulletin international de l'Académie des Sciences de Cracovie. Classe des Sciences Mathématiques et Naturelles, Serie A: Sciences mathématiques (French), 313-344. |
[1] |
Sándor Kelemen, Pavol Quittner. Boundedness and a priori estimates of solutions to elliptic systems with Dirichlet-Neumann boundary conditions. Communications on Pure and Applied Analysis, 2010, 9 (3) : 731-740. doi: 10.3934/cpaa.2010.9.731 |
[2] |
Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 |
[3] |
Mei Ming. Weighted elliptic estimates for a mixed boundary system related to the Dirichlet-Neumann operator on a corner domain. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 6039-6067. doi: 10.3934/dcds.2019264 |
[4] |
Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63 |
[5] |
Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555 |
[6] |
Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 |
[7] |
Shouming Zhou, Chunlai Mu, Yongsheng Mi, Fuchen Zhang. Blow-up for a non-local diffusion equation with exponential reaction term and Neumann boundary condition. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2935-2946. doi: 10.3934/cpaa.2013.12.2935 |
[8] |
Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete and Continuous Dynamical Systems, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 |
[9] |
Eugenio Montefusco, Benedetta Pellacci, Gianmaria Verzini. Fractional diffusion with Neumann boundary conditions: The logistic equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2175-2202. doi: 10.3934/dcdsb.2013.18.2175 |
[10] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[11] |
Nadjat Doudi, Salah Boulaaras, Nadia Mezouar, Rashid Jan. Global existence, general decay and blow-up for a nonlinear wave equation with logarithmic source term and fractional boundary dissipation. Discrete and Continuous Dynamical Systems - S, 2022 doi: 10.3934/dcdss.2022106 |
[12] |
Claudia Anedda, Giovanni Porru. Second order estimates for boundary blow-up solutions of elliptic equations. Conference Publications, 2007, 2007 (Special) : 54-63. doi: 10.3934/proc.2007.2007.54 |
[13] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[14] |
Keng Deng, Zhihua Dong. Blow-up for the heat equation with a general memory boundary condition. Communications on Pure and Applied Analysis, 2012, 11 (5) : 2147-2156. doi: 10.3934/cpaa.2012.11.2147 |
[15] |
Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 |
[16] |
Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 |
[17] |
Mengxian Lv, Jianghao Hao. General decay and blow-up for coupled Kirchhoff wave equations with dynamic boundary conditions. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021058 |
[18] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure and Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[19] |
Mingzhu Wu, Zuodong Yang. Existence of boundary blow-up solutions for a class of quasiliner elliptic systems for the subcritical case. Communications on Pure and Applied Analysis, 2007, 6 (2) : 531-540. doi: 10.3934/cpaa.2007.6.531 |
[20] |
Jorge García-Melián, Julio D. Rossi, José C. Sabina de Lis. Elliptic systems with boundary blow-up: existence, uniqueness and applications to removability of singularities. Communications on Pure and Applied Analysis, 2016, 15 (2) : 549-562. doi: 10.3934/cpaa.2016.15.549 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]