January  2019, 18(1): 159-180. doi: 10.3934/cpaa.2019009

Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity

1. 

King Fahd University of Petroleum and Minerals, The Preparatory Year Program, Department of Mathematics, Dhahran 31261, Saudi Arabia

2. 

Institut Elie Cartan de Lorraine, UMR 7502, Université de Lorraine, 3 Rue Augustin Fresnel, BP 45112, 57073 Metz Cedex 03, France

3. 

King Fahd University of Petroleum and Minerals, Department of Mathematics and Statistics, Dhahran 31261, Saudi Arabia

Received  September 2017 Revised  January 2018 Published  August 2018

In this paper, we consider a viscoelastic plate equation with a logarithmic nonlinearity. Using the Galaerkin method and the multiplier method, we establish the existence of solutions and prove an explicit and general decay rate result. This result extends and improves many results in the literature such as Gorka [19], Hiramatsu et al. [27] and Han and Wang [26].

Citation: Mohammad M. Al-Gharabli, Aissa Guesmia, Salim A. Messaoudi. Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (1) : 159-180. doi: 10.3934/cpaa.2019009
References:
[1]

J. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587.   Google Scholar

[2]

K. Bartkowski and P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities J. Phys. A, 41 (2008), 355201, 11 pp. doi: 10. 1088/1751-8113/41/35/355201.  Google Scholar

[3]

A. Benaissa and A. Guesmia, Energy decay of solutions of a wave equation of ϕ-Laplacian type with a general weakly nolinear dissipation, Elec. J. Diff. Equa., 109 (2008), 1-22.   Google Scholar

[4]

S. Berrimi and S. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations, 88 (2004), 1-10.   Google Scholar

[5]

I. Bialynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 461-466.   Google Scholar

[6]

I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics, 100 (1976), 62-93.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[7]

M. CavalcantiV. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043-1053.  doi: 10.1002/mma.250.  Google Scholar

[8]

M. CavalcantiV. Domingos Cavalcanti and J. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, E. J. Differ. Eq., 44 (2002), 1-14.   Google Scholar

[9]

M. Cavalcanti and A. Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type, Diff. Integ. Equa., 18 (2005), 583-600.   Google Scholar

[10]

M. Cavalcanti and H. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310-1324.  doi: 10.1137/S0363012902408010.  Google Scholar

[11]

T. Cazenave and A. Haraux, Equations d'evolution avec non-linearite logarithmique, Ann. Fac. Sci. Toulouse Math., 2 (1980), 21-51.   Google Scholar

[12]

H. ChenP. Luo and G. W. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[13]

W. Chen and Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear Analysis A, 70 (2009), 3203-3208.  doi: 10.1016/j.na.2008.04.024.  Google Scholar

[14]

R. Christensen, Theory of Viscoelasticity, An Introduction, Academic Press: New York, 1982. Google Scholar

[15]

C. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[16]

C. Dafermos, On abstract volterra equations with applications to linear viscoelasticity, J. Differ. Equ., 7 (1970), 554-569.  doi: 10.1016/0022-0396(70)90101-4.  Google Scholar

[17]

G. Dasios and F. Zafiropoulos, Equipartition of energy in linearized 3-D viscoelasticity, Quart. Appl. Math., 48 (1990), 715-730.  doi: 10.1090/qam/1079915.  Google Scholar

[18]

K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B, 425 (1998), 309-321.   Google Scholar

[19]

P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66.   Google Scholar

[20]

P. GorkaH. Prado and G. Reyes, Nonlinear equations with infinitely many derivatives, Complex Anal. Oper. Theory, 5 (2011), 313-323.  doi: 10.1007/s11785-009-0043-z.  Google Scholar

[21]

L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.  doi: 10.2307/2373688.  Google Scholar

[22]

A. Guesmia, Existence globale et stabilisation interne non linéaire d'un système de Petrovsky, Bull. Belg. Math. Soc., 5 (1998), 583-594.   Google Scholar

[23]

A. Guesmia, Stabilisation de l'équation des ondes avec conditions aux limites de type mémoire, Afrika Matematika, 10 (1999), 14-25.   Google Scholar

[24]

A. GuesmiaS. Messaoudi and B. Said-Houari, General decay of solutions of a nonlinear system of viscoelastic wave equations, NoDEA, 18 (2011), 659-684.  doi: 10.1007/s00030-011-0112-7.  Google Scholar

[25]

X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc., 50 (2013), 275-283.  doi: 10.4134/BKMS.2013.50.1.275.  Google Scholar

[26]

X. Han and M. Wang, General decay estimate of energy for the second order evolution equations with memory, Act Appl. Math., 110 (2010), 194-207.  doi: 10.1007/s10440-008-9397-x.  Google Scholar

[27]

T. Hiramatsu, M. Kawasaki and F. Takahashi, Numerical study of Q-ball formation in gravity mediation, Journal of Cosmology and Astroparticle Physics, 6 (2010), 008. Google Scholar

[28]

H. Hrusa, Global existence and asymptotic stability for a semilinear Volterra equation with large initial data, SIAM J. Math. Anal., 16 (1985), 110-134.  doi: 10.1137/0516007.  Google Scholar

[29]

V. Komornik, On the nonlinear boundary stabilization of Kirchoff plates, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 323-337.  doi: 10.1007/BF01194984.  Google Scholar

[30]

J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989. doi: 10. 1137/1. 9781611970821.  Google Scholar

[31]

J. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International Series of Numerical Mathematics, vol. 91. Birhauser: Verlag, Bassel, 1989.  Google Scholar

[32]

I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli moments only, J. Differential Equations, 95 (1992), 169-182.  doi: 10.1016/0022-0396(92)90048-R.  Google Scholar

[33]

J. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, second Edition, Dunod, Paris, 2002.  Google Scholar

[34]

Z. LiZ. Zhao and Y. Chen, Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Anal.: RealWorld Applications, 12 (2011), 1759-1773.  doi: 10.1016/j.nonrwa.2010.11.009.  Google Scholar

[35]

M-T. Lacroix-Sonrier, Distrubutions Espace de Sobolev Application, Ellipses Edition Marketing S. A, 1998.  Google Scholar

[36]

S. Messaoudi, Global existence and nonexistence in a system of Petrovsky, Journal of Mathematical Analysis and Applications, 265 (2002), 296-308.  doi: 10.1006/jmaa.2001.7697.  Google Scholar

[37]

S. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal., 69 (2008), 2589-2598.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[38]

S. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. App., 341 (2008), 1457-1467.  doi: 10.1016/j.jmaa.2007.11.048.  Google Scholar

[39]

S. Messaoudi and N.-E Tatar, Global existence asymptotic behavior for a non-linear viscoelastic problem, Math. Methods Sci. Res., 7 (2003), 136-149.   Google Scholar

[40]

S. Messaoudi and N.-E Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665-680.  doi: 10.1002/mma.804.  Google Scholar

[41]

S. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Applied Mathematics Letters, 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.  Google Scholar

[42]

Rivera J. Muñoz, Asymptotic behavior in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.  doi: 10.1090/qam/1306041.  Google Scholar

[43]

Rivera J. MuñozE. C. Lapa and R. Barreto, Decay rates for viscoelastic paltes with memory, Journal of Elasticity, 44 (1996), 61-87.  doi: 10.1007/BF00042192.  Google Scholar

[44]

M. Santos and F. junior, A boundary condition with memory for Kirchoff plates equations, Appl. Math. Comput., 148 (2004), 475-496.  doi: 10.1016/S0096-3003(02)00915-3.  Google Scholar

[45]

V. S. Vladimirov, The equation of the p-adic open string for the scalar tachyon field, Izv. Math., 69 (2005), 487-512.  doi: 10.1070/IM2005v069n03ABEH000536.  Google Scholar

show all references

References:
[1]

J. Barrow and P. Parsons, Inflationary models with logarithmic potentials, Phys. Rev. D, 52 (1995), 5576-5587.   Google Scholar

[2]

K. Bartkowski and P. Gorka, One-dimensional Klein-Gordon equation with logarithmic nonlinearities J. Phys. A, 41 (2008), 355201, 11 pp. doi: 10. 1088/1751-8113/41/35/355201.  Google Scholar

[3]

A. Benaissa and A. Guesmia, Energy decay of solutions of a wave equation of ϕ-Laplacian type with a general weakly nolinear dissipation, Elec. J. Diff. Equa., 109 (2008), 1-22.   Google Scholar

[4]

S. Berrimi and S. Messaoudi, Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping, Electron. J. Differential Equations, 88 (2004), 1-10.   Google Scholar

[5]

I. Bialynicki-Birula and J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys., 23 (1975), 461-466.   Google Scholar

[6]

I. Bialynicki-Birula and J. Mycielski, Nonlinear wave mechanics, Ann. Physics, 100 (1976), 62-93.  doi: 10.1016/0003-4916(76)90057-9.  Google Scholar

[7]

M. CavalcantiV. Domingos Cavalcanti and J. Ferreira, Existence and uniform decay for nonlinear viscoelastic equation with strong damping, Math. Methods Appl. Sci., 24 (2001), 1043-1053.  doi: 10.1002/mma.250.  Google Scholar

[8]

M. CavalcantiV. Domingos Cavalcanti and J. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, E. J. Differ. Eq., 44 (2002), 1-14.   Google Scholar

[9]

M. Cavalcanti and A. Guesmia, General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type, Diff. Integ. Equa., 18 (2005), 583-600.   Google Scholar

[10]

M. Cavalcanti and H. Oquendo, Frictional versus viscoelastic damping in a semilinear wave equation, SIAM J. Control Optim., 42 (2003), 1310-1324.  doi: 10.1137/S0363012902408010.  Google Scholar

[11]

T. Cazenave and A. Haraux, Equations d'evolution avec non-linearite logarithmique, Ann. Fac. Sci. Toulouse Math., 2 (1980), 21-51.   Google Scholar

[12]

H. ChenP. Luo and G. W. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84-98.  doi: 10.1016/j.jmaa.2014.08.030.  Google Scholar

[13]

W. Chen and Y. Zhou, Global nonexistence for a semilinear Petrovsky equation, Nonlinear Analysis A, 70 (2009), 3203-3208.  doi: 10.1016/j.na.2008.04.024.  Google Scholar

[14]

R. Christensen, Theory of Viscoelasticity, An Introduction, Academic Press: New York, 1982. Google Scholar

[15]

C. Dafermos, Asymptotic stability in viscoelasticity, Arch. Ration. Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.  Google Scholar

[16]

C. Dafermos, On abstract volterra equations with applications to linear viscoelasticity, J. Differ. Equ., 7 (1970), 554-569.  doi: 10.1016/0022-0396(70)90101-4.  Google Scholar

[17]

G. Dasios and F. Zafiropoulos, Equipartition of energy in linearized 3-D viscoelasticity, Quart. Appl. Math., 48 (1990), 715-730.  doi: 10.1090/qam/1079915.  Google Scholar

[18]

K. Enqvist and J. McDonald, Q-balls and baryogenesis in the MSSM, Phys. Lett. B, 425 (1998), 309-321.   Google Scholar

[19]

P. Gorka, Logarithmic Klein-Gordon equation, Acta Phys. Polon. B, 40 (2009), 59-66.   Google Scholar

[20]

P. GorkaH. Prado and G. Reyes, Nonlinear equations with infinitely many derivatives, Complex Anal. Oper. Theory, 5 (2011), 313-323.  doi: 10.1007/s11785-009-0043-z.  Google Scholar

[21]

L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math., 97 (1975), 1061-1083.  doi: 10.2307/2373688.  Google Scholar

[22]

A. Guesmia, Existence globale et stabilisation interne non linéaire d'un système de Petrovsky, Bull. Belg. Math. Soc., 5 (1998), 583-594.   Google Scholar

[23]

A. Guesmia, Stabilisation de l'équation des ondes avec conditions aux limites de type mémoire, Afrika Matematika, 10 (1999), 14-25.   Google Scholar

[24]

A. GuesmiaS. Messaoudi and B. Said-Houari, General decay of solutions of a nonlinear system of viscoelastic wave equations, NoDEA, 18 (2011), 659-684.  doi: 10.1007/s00030-011-0112-7.  Google Scholar

[25]

X. Han, Global existence of weak solutions for a logarithmic wave equation arising from Q-ball dynamics, Bull. Korean Math. Soc., 50 (2013), 275-283.  doi: 10.4134/BKMS.2013.50.1.275.  Google Scholar

[26]

X. Han and M. Wang, General decay estimate of energy for the second order evolution equations with memory, Act Appl. Math., 110 (2010), 194-207.  doi: 10.1007/s10440-008-9397-x.  Google Scholar

[27]

T. Hiramatsu, M. Kawasaki and F. Takahashi, Numerical study of Q-ball formation in gravity mediation, Journal of Cosmology and Astroparticle Physics, 6 (2010), 008. Google Scholar

[28]

H. Hrusa, Global existence and asymptotic stability for a semilinear Volterra equation with large initial data, SIAM J. Math. Anal., 16 (1985), 110-134.  doi: 10.1137/0516007.  Google Scholar

[29]

V. Komornik, On the nonlinear boundary stabilization of Kirchoff plates, NoDEA Nonlinear Differential Equations Appl., 1 (1994), 323-337.  doi: 10.1007/BF01194984.  Google Scholar

[30]

J. Lagnese, Boundary Stabilization of Thin Plates, SIAM, Philadelphia, 1989. doi: 10. 1137/1. 9781611970821.  Google Scholar

[31]

J. Lagnese, Asymptotic energy estimates for Kirchhoff plates subject to weak viscoelastic damping, International Series of Numerical Mathematics, vol. 91. Birhauser: Verlag, Bassel, 1989.  Google Scholar

[32]

I. Lasiecka, Exponential decay rates for the solutions of Euler-Bernoulli moments only, J. Differential Equations, 95 (1992), 169-182.  doi: 10.1016/0022-0396(92)90048-R.  Google Scholar

[33]

J. Lions, Quelques Methodes de Resolution des Problemes aux Limites Non Lineaires, second Edition, Dunod, Paris, 2002.  Google Scholar

[34]

Z. LiZ. Zhao and Y. Chen, Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation, Nonlinear Anal.: RealWorld Applications, 12 (2011), 1759-1773.  doi: 10.1016/j.nonrwa.2010.11.009.  Google Scholar

[35]

M-T. Lacroix-Sonrier, Distrubutions Espace de Sobolev Application, Ellipses Edition Marketing S. A, 1998.  Google Scholar

[36]

S. Messaoudi, Global existence and nonexistence in a system of Petrovsky, Journal of Mathematical Analysis and Applications, 265 (2002), 296-308.  doi: 10.1006/jmaa.2001.7697.  Google Scholar

[37]

S. Messaoudi, General decay of solution energy in a viscoelastic equation with a nonlinear source, Nonlinear Anal., 69 (2008), 2589-2598.  doi: 10.1016/j.na.2007.08.035.  Google Scholar

[38]

S. Messaoudi, General decay of solutions of a viscoelastic equation, J. Math. Anal. App., 341 (2008), 1457-1467.  doi: 10.1016/j.jmaa.2007.11.048.  Google Scholar

[39]

S. Messaoudi and N.-E Tatar, Global existence asymptotic behavior for a non-linear viscoelastic problem, Math. Methods Sci. Res., 7 (2003), 136-149.   Google Scholar

[40]

S. Messaoudi and N.-E Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Methods Appl. Sci., 30 (2007), 665-680.  doi: 10.1002/mma.804.  Google Scholar

[41]

S. Messaoudi and W. Al-Khulaifi, General and optimal decay for a quasilinear viscoelastic equation, Applied Mathematics Letters, 66 (2017), 16-22.  doi: 10.1016/j.aml.2016.11.002.  Google Scholar

[42]

Rivera J. Muñoz, Asymptotic behavior in linear viscoelasticity, Quart. Appl. Math., 52 (1994), 628-648.  doi: 10.1090/qam/1306041.  Google Scholar

[43]

Rivera J. MuñozE. C. Lapa and R. Barreto, Decay rates for viscoelastic paltes with memory, Journal of Elasticity, 44 (1996), 61-87.  doi: 10.1007/BF00042192.  Google Scholar

[44]

M. Santos and F. junior, A boundary condition with memory for Kirchoff plates equations, Appl. Math. Comput., 148 (2004), 475-496.  doi: 10.1016/S0096-3003(02)00915-3.  Google Scholar

[45]

V. S. Vladimirov, The equation of the p-adic open string for the scalar tachyon field, Izv. Math., 69 (2005), 487-512.  doi: 10.1070/IM2005v069n03ABEH000536.  Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[4]

Yasemin Şengül. Viscoelasticity with limiting strain. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 57-70. doi: 10.3934/dcdss.2020330

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[7]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[8]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[9]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[10]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[11]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[12]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[13]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[14]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[17]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[18]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[19]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[20]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (277)
  • HTML views (259)
  • Cited by (6)

[Back to Top]