January  2019, 18(1): 227-236. doi: 10.3934/cpaa.2019012

On a p-Laplacian eigenvalue problem with supercritical exponent

School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, Fuzhou, 350117, China

* Corresponding author

Received  October 2017 Revised  April 2018 Published  August 2018

Fund Project: Partially supported by NSFC Grant(11401100, 11671085), the Science foundation of Fujian province(2017J01552), and the innovation foundation of Fujian Normal University(IRTL1206).

In this paper, we prove the existence of the positive and negative solutions to p-Laplacian eigenvalue problems with supercritical exponent. This extends previous results on the problems with subcritical and critical exponents.

Citation: Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012
References:
[1]

H. Amann, Lusternik-Schnirelman theory and nonlinear eigenvalue problems, Math. Ann., 199 (1972), 55-72.  doi: 10.1007/BF01419576.  Google Scholar

[2]

J. Benedikt and P. Drábek, Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1, Nonlinear Anal. TMA, 93 (2013), 23-29.  doi: 10.1016/j.na.2013.07.026.  Google Scholar

[3]

J. Q. ChenS. W. Chen and Y. Q. Li, On a quasilinear elliptic eigenvalue problem with constraint, Sci. China, Ser. A: Math., 47 (2004), 523-537.  doi: 10.1360/02ys0324.  Google Scholar

[4]

D. G. De FigueiredoJ. P. Gossez and P. Ubilla, Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal., 257 (2009), 721-752.  doi: 10.1016/j.jfa.2009.04.001.  Google Scholar

[5]

J. FleckingerE. M. Harrell II and F. de Thélin, On the fundamental eigenvalue ratio of the p-Laplacian, Bull. Sci. Math., 131 (2007), 613-619.  doi: 10.1016/j.bulsci.2006.03.016.  Google Scholar

[6]

B. L. GuoQ. X. Li and Y. Q. Li, Sign-changing solutions of a p-Laplacian elliptic problem with constraint in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 451 (2017), 604-622.  doi: 10.1016/j.jmaa.2017.01.091.  Google Scholar

[7]

S. C. Hu and N. S. Papageorgiou, Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian, Nonlinear Anal. TMA, 69 (2008), 4286-4300.  doi: 10.1016/j.na.2007.10.053.  Google Scholar

[8]

Y. Q. Li, On a nonlinear elliptic eigenvalue problem, J. Differ. Equ., 117 (1995), 151-164 doi: 10.1006/jdeq.1995.1051.  Google Scholar

[9]

Y. Q. Li, Three solutions of a semilinear elliptic eigenvalue problem, Acta Math. Sin., New Ser., 11 (1995), 142-152.   Google Scholar

[10]

Y. Q. Li and Z. L. Liu, Multiple and sign-changing solutions of an elliptic eigenvalue problem with constraint, Sci. China, Ser. A., 44 (2001), 48-57.  doi: 10.1007/BF02872282.  Google Scholar

[11]

A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. TMA, 64 (2006), 1057-1099.  doi: 10.1016/j.na.2005.05.056.  Google Scholar

[12]

J. Q. Liu and X. Q. Liu, On the eigenvalue problem for the p-Laplacian operator in $R^N$, J. Math. Anal. Appl., 379 (2011), 861-869.  doi: 10.1016/j.jmaa.2011.01.075.  Google Scholar

[13]

E. H. Lieb and M. Loss, Analysis, second edition, Americal Mathematical sociaty, provedince Rhode Island, 2001. Google Scholar

[14]

R. E. Megginson, An introduction to Banach Space Theory, Springer, 1998. doi: 10.1007/978-1-4612-0603-3.  Google Scholar

[15]

A. Szulkin, Ljusternik-Schnirelman Theory on $C^1$-manifolds, Ann. Inst. Henri Poincaré, 5 (1988), 119-139.   Google Scholar

[16]

S. Sakaguchi, Concavity properties of solutions to some degerate quasilinear elliptic Dirichlet Problems, Ann. Scuola Normale Sup. di Pisa Serie 4, 14 (1987), 403-421.   Google Scholar

[17]

D. Valtorta, Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal., 75 (2012), 4974-4994.  doi: 10.1016/j.na.2012.04.012.  Google Scholar

[18]

M. Xu and X. P. Yang, Remark on solvability of p-laplacian equtions in large dimension, Israel J. Math., 172 (2009), 349-356.  doi: 10.1007/s11856-009-0077-y.  Google Scholar

[19]

E. Zeidler, Ljusternik-Schnirelman theory on general level sets, Math. Nachr., 129 (1986), 235-259.  doi: 10.1002/mana.19861290121.  Google Scholar

[20]

E. Zeidler, Nonlinear Functional Analysis and Its Applications III, New-York: Springer-Verlag, 1985. doi: 10.1007/978-1-4612-5020-3.  Google Scholar

[21]

Y. S. Zhong and Y. Q. Li, A new form for the differential of the constraint functional in strictly convex reflexive Banach spaces, J. Math. Anal. Appl., 455 (2017), 1783-1800.  doi: 10.1016/j.jmaa.2017.06.080.  Google Scholar

show all references

References:
[1]

H. Amann, Lusternik-Schnirelman theory and nonlinear eigenvalue problems, Math. Ann., 199 (1972), 55-72.  doi: 10.1007/BF01419576.  Google Scholar

[2]

J. Benedikt and P. Drábek, Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1, Nonlinear Anal. TMA, 93 (2013), 23-29.  doi: 10.1016/j.na.2013.07.026.  Google Scholar

[3]

J. Q. ChenS. W. Chen and Y. Q. Li, On a quasilinear elliptic eigenvalue problem with constraint, Sci. China, Ser. A: Math., 47 (2004), 523-537.  doi: 10.1360/02ys0324.  Google Scholar

[4]

D. G. De FigueiredoJ. P. Gossez and P. Ubilla, Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal., 257 (2009), 721-752.  doi: 10.1016/j.jfa.2009.04.001.  Google Scholar

[5]

J. FleckingerE. M. Harrell II and F. de Thélin, On the fundamental eigenvalue ratio of the p-Laplacian, Bull. Sci. Math., 131 (2007), 613-619.  doi: 10.1016/j.bulsci.2006.03.016.  Google Scholar

[6]

B. L. GuoQ. X. Li and Y. Q. Li, Sign-changing solutions of a p-Laplacian elliptic problem with constraint in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 451 (2017), 604-622.  doi: 10.1016/j.jmaa.2017.01.091.  Google Scholar

[7]

S. C. Hu and N. S. Papageorgiou, Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian, Nonlinear Anal. TMA, 69 (2008), 4286-4300.  doi: 10.1016/j.na.2007.10.053.  Google Scholar

[8]

Y. Q. Li, On a nonlinear elliptic eigenvalue problem, J. Differ. Equ., 117 (1995), 151-164 doi: 10.1006/jdeq.1995.1051.  Google Scholar

[9]

Y. Q. Li, Three solutions of a semilinear elliptic eigenvalue problem, Acta Math. Sin., New Ser., 11 (1995), 142-152.   Google Scholar

[10]

Y. Q. Li and Z. L. Liu, Multiple and sign-changing solutions of an elliptic eigenvalue problem with constraint, Sci. China, Ser. A., 44 (2001), 48-57.  doi: 10.1007/BF02872282.  Google Scholar

[11]

A. Lê, Eigenvalue problems for the p-Laplacian, Nonlinear Anal. TMA, 64 (2006), 1057-1099.  doi: 10.1016/j.na.2005.05.056.  Google Scholar

[12]

J. Q. Liu and X. Q. Liu, On the eigenvalue problem for the p-Laplacian operator in $R^N$, J. Math. Anal. Appl., 379 (2011), 861-869.  doi: 10.1016/j.jmaa.2011.01.075.  Google Scholar

[13]

E. H. Lieb and M. Loss, Analysis, second edition, Americal Mathematical sociaty, provedince Rhode Island, 2001. Google Scholar

[14]

R. E. Megginson, An introduction to Banach Space Theory, Springer, 1998. doi: 10.1007/978-1-4612-0603-3.  Google Scholar

[15]

A. Szulkin, Ljusternik-Schnirelman Theory on $C^1$-manifolds, Ann. Inst. Henri Poincaré, 5 (1988), 119-139.   Google Scholar

[16]

S. Sakaguchi, Concavity properties of solutions to some degerate quasilinear elliptic Dirichlet Problems, Ann. Scuola Normale Sup. di Pisa Serie 4, 14 (1987), 403-421.   Google Scholar

[17]

D. Valtorta, Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal., 75 (2012), 4974-4994.  doi: 10.1016/j.na.2012.04.012.  Google Scholar

[18]

M. Xu and X. P. Yang, Remark on solvability of p-laplacian equtions in large dimension, Israel J. Math., 172 (2009), 349-356.  doi: 10.1007/s11856-009-0077-y.  Google Scholar

[19]

E. Zeidler, Ljusternik-Schnirelman theory on general level sets, Math. Nachr., 129 (1986), 235-259.  doi: 10.1002/mana.19861290121.  Google Scholar

[20]

E. Zeidler, Nonlinear Functional Analysis and Its Applications III, New-York: Springer-Verlag, 1985. doi: 10.1007/978-1-4612-5020-3.  Google Scholar

[21]

Y. S. Zhong and Y. Q. Li, A new form for the differential of the constraint functional in strictly convex reflexive Banach spaces, J. Math. Anal. Appl., 455 (2017), 1783-1800.  doi: 10.1016/j.jmaa.2017.06.080.  Google Scholar

[1]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[2]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[3]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[4]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[5]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[6]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[7]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[8]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[9]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[10]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[11]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[12]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[13]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[14]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[17]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[18]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[19]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[20]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (137)
  • HTML views (160)
  • Cited by (1)

Other articles
by authors

[Back to Top]