-
Previous Article
Critical system involving fractional Laplacian
- CPAA Home
- This Issue
-
Next Article
Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants
On a p-Laplacian eigenvalue problem with supercritical exponent
School of Mathematics and Computer Science & FJKLMAA, Fujian Normal University, Fuzhou, 350117, China |
In this paper, we prove the existence of the positive and negative solutions to p-Laplacian eigenvalue problems with supercritical exponent. This extends previous results on the problems with subcritical and critical exponents.
References:
[1] |
H. Amann,
Lusternik-Schnirelman theory and nonlinear eigenvalue problems, Math. Ann., 199 (1972), 55-72.
doi: 10.1007/BF01419576. |
[2] |
J. Benedikt and P. Drábek,
Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1, Nonlinear Anal. TMA, 93 (2013), 23-29.
doi: 10.1016/j.na.2013.07.026. |
[3] |
J. Q. Chen, S. W. Chen and Y. Q. Li,
On a quasilinear elliptic eigenvalue problem with constraint, Sci. China, Ser. A: Math., 47 (2004), 523-537.
doi: 10.1360/02ys0324. |
[4] |
D. G. De Figueiredo, J. P. Gossez and P. Ubilla,
Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal., 257 (2009), 721-752.
doi: 10.1016/j.jfa.2009.04.001. |
[5] |
J. Fleckinger, E. M. Harrell II and F. de Thélin,
On the fundamental eigenvalue ratio of the p-Laplacian, Bull. Sci. Math., 131 (2007), 613-619.
doi: 10.1016/j.bulsci.2006.03.016. |
[6] |
B. L. Guo, Q. X. Li and Y. Q. Li,
Sign-changing solutions of a p-Laplacian elliptic problem with constraint in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 451 (2017), 604-622.
doi: 10.1016/j.jmaa.2017.01.091. |
[7] |
S. C. Hu and N. S. Papageorgiou,
Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian, Nonlinear Anal. TMA, 69 (2008), 4286-4300.
doi: 10.1016/j.na.2007.10.053. |
[8] |
Y. Q. Li, On a nonlinear elliptic eigenvalue problem, J. Differ. Equ., 117 (1995), 151-164
doi: 10.1006/jdeq.1995.1051. |
[9] |
Y. Q. Li,
Three solutions of a semilinear elliptic eigenvalue problem, Acta Math. Sin., New Ser., 11 (1995), 142-152.
|
[10] |
Y. Q. Li and Z. L. Liu,
Multiple and sign-changing solutions of an elliptic eigenvalue problem with constraint, Sci. China, Ser. A., 44 (2001), 48-57.
doi: 10.1007/BF02872282. |
[11] |
A. Lê,
Eigenvalue problems for the p-Laplacian, Nonlinear Anal. TMA, 64 (2006), 1057-1099.
doi: 10.1016/j.na.2005.05.056. |
[12] |
J. Q. Liu and X. Q. Liu,
On the eigenvalue problem for the p-Laplacian operator in $R^N$, J. Math. Anal. Appl., 379 (2011), 861-869.
doi: 10.1016/j.jmaa.2011.01.075. |
[13] |
E. H. Lieb and M. Loss, Analysis, second edition, Americal Mathematical sociaty, provedince Rhode Island, 2001. Google Scholar |
[14] |
R. E. Megginson, An introduction to Banach Space Theory, Springer, 1998.
doi: 10.1007/978-1-4612-0603-3. |
[15] |
A. Szulkin,
Ljusternik-Schnirelman Theory on $C^1$-manifolds, Ann. Inst. Henri Poincaré, 5 (1988), 119-139.
|
[16] |
S. Sakaguchi,
Concavity properties of solutions to some degerate quasilinear elliptic Dirichlet Problems, Ann. Scuola Normale Sup. di Pisa Serie 4, 14 (1987), 403-421.
|
[17] |
D. Valtorta,
Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal., 75 (2012), 4974-4994.
doi: 10.1016/j.na.2012.04.012. |
[18] |
M. Xu and X. P. Yang,
Remark on solvability of p-laplacian equtions in large dimension, Israel J. Math., 172 (2009), 349-356.
doi: 10.1007/s11856-009-0077-y. |
[19] |
E. Zeidler,
Ljusternik-Schnirelman theory on general level sets, Math. Nachr., 129 (1986), 235-259.
doi: 10.1002/mana.19861290121. |
[20] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications III, New-York: Springer-Verlag, 1985.
doi: 10.1007/978-1-4612-5020-3. |
[21] |
Y. S. Zhong and Y. Q. Li,
A new form for the differential of the constraint functional in strictly convex reflexive Banach spaces, J. Math. Anal. Appl., 455 (2017), 1783-1800.
doi: 10.1016/j.jmaa.2017.06.080. |
show all references
References:
[1] |
H. Amann,
Lusternik-Schnirelman theory and nonlinear eigenvalue problems, Math. Ann., 199 (1972), 55-72.
doi: 10.1007/BF01419576. |
[2] |
J. Benedikt and P. Drábek,
Asymptotics for the principal eigenvalue of the p-Laplacian on the ball as p approaches 1, Nonlinear Anal. TMA, 93 (2013), 23-29.
doi: 10.1016/j.na.2013.07.026. |
[3] |
J. Q. Chen, S. W. Chen and Y. Q. Li,
On a quasilinear elliptic eigenvalue problem with constraint, Sci. China, Ser. A: Math., 47 (2004), 523-537.
doi: 10.1360/02ys0324. |
[4] |
D. G. De Figueiredo, J. P. Gossez and P. Ubilla,
Local "superlinearity" and "sublinearity" for the p-Laplacian, J. Funct. Anal., 257 (2009), 721-752.
doi: 10.1016/j.jfa.2009.04.001. |
[5] |
J. Fleckinger, E. M. Harrell II and F. de Thélin,
On the fundamental eigenvalue ratio of the p-Laplacian, Bull. Sci. Math., 131 (2007), 613-619.
doi: 10.1016/j.bulsci.2006.03.016. |
[6] |
B. L. Guo, Q. X. Li and Y. Q. Li,
Sign-changing solutions of a p-Laplacian elliptic problem with constraint in $\mathbb{R}^{N}$, J. Math. Anal. Appl., 451 (2017), 604-622.
doi: 10.1016/j.jmaa.2017.01.091. |
[7] |
S. C. Hu and N. S. Papageorgiou,
Multiple positive solutions for nonlinear eigenvalue problems with the p-Laplacian, Nonlinear Anal. TMA, 69 (2008), 4286-4300.
doi: 10.1016/j.na.2007.10.053. |
[8] |
Y. Q. Li, On a nonlinear elliptic eigenvalue problem, J. Differ. Equ., 117 (1995), 151-164
doi: 10.1006/jdeq.1995.1051. |
[9] |
Y. Q. Li,
Three solutions of a semilinear elliptic eigenvalue problem, Acta Math. Sin., New Ser., 11 (1995), 142-152.
|
[10] |
Y. Q. Li and Z. L. Liu,
Multiple and sign-changing solutions of an elliptic eigenvalue problem with constraint, Sci. China, Ser. A., 44 (2001), 48-57.
doi: 10.1007/BF02872282. |
[11] |
A. Lê,
Eigenvalue problems for the p-Laplacian, Nonlinear Anal. TMA, 64 (2006), 1057-1099.
doi: 10.1016/j.na.2005.05.056. |
[12] |
J. Q. Liu and X. Q. Liu,
On the eigenvalue problem for the p-Laplacian operator in $R^N$, J. Math. Anal. Appl., 379 (2011), 861-869.
doi: 10.1016/j.jmaa.2011.01.075. |
[13] |
E. H. Lieb and M. Loss, Analysis, second edition, Americal Mathematical sociaty, provedince Rhode Island, 2001. Google Scholar |
[14] |
R. E. Megginson, An introduction to Banach Space Theory, Springer, 1998.
doi: 10.1007/978-1-4612-0603-3. |
[15] |
A. Szulkin,
Ljusternik-Schnirelman Theory on $C^1$-manifolds, Ann. Inst. Henri Poincaré, 5 (1988), 119-139.
|
[16] |
S. Sakaguchi,
Concavity properties of solutions to some degerate quasilinear elliptic Dirichlet Problems, Ann. Scuola Normale Sup. di Pisa Serie 4, 14 (1987), 403-421.
|
[17] |
D. Valtorta,
Sharp estimate on the first eigenvalue of the p-Laplacian, Nonlinear Anal., 75 (2012), 4974-4994.
doi: 10.1016/j.na.2012.04.012. |
[18] |
M. Xu and X. P. Yang,
Remark on solvability of p-laplacian equtions in large dimension, Israel J. Math., 172 (2009), 349-356.
doi: 10.1007/s11856-009-0077-y. |
[19] |
E. Zeidler,
Ljusternik-Schnirelman theory on general level sets, Math. Nachr., 129 (1986), 235-259.
doi: 10.1002/mana.19861290121. |
[20] |
E. Zeidler, Nonlinear Functional Analysis and Its Applications III, New-York: Springer-Verlag, 1985.
doi: 10.1007/978-1-4612-5020-3. |
[21] |
Y. S. Zhong and Y. Q. Li,
A new form for the differential of the constraint functional in strictly convex reflexive Banach spaces, J. Math. Anal. Appl., 455 (2017), 1783-1800.
doi: 10.1016/j.jmaa.2017.06.080. |
[1] |
Meiqiang Feng, Yichen Zhang. Positive solutions of singular multiparameter p-Laplacian elliptic systems. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021083 |
[2] |
Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060 |
[3] |
Alfonso Castro, Jorge Cossio, Sigifredo Herrón, Carlos Vélez. Infinitely many radial solutions for a $ p $-Laplacian problem with indefinite weight. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021058 |
[4] |
Chonghu Guan, Xun Li, Rui Zhou, Wenxin Zhou. Free boundary problem for an optimal investment problem with a borrowing constraint. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021049 |
[5] |
Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004 |
[6] |
Claudia Lederman, Noemi Wolanski. An optimization problem with volume constraint for an inhomogeneous operator with nonstandard growth. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2907-2946. doi: 10.3934/dcds.2020391 |
[7] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[8] |
Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021107 |
[9] |
Said Taarabti. Positive solutions for the $ p(x)- $Laplacian : Application of the Nehari method. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021029 |
[10] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403 |
[11] |
Anhui Gu. Weak pullback mean random attractors for non-autonomous $ p $-Laplacian equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3863-3878. doi: 10.3934/dcdsb.2020266 |
[12] |
Yuxin Tan, Yijing Sun. The Orlicz Minkowski problem involving $ 0 < p < 1 $: From one constant to an infinite interval. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021037 |
[13] |
Ziteng Wang, Shu-Cherng Fang, Wenxun Xing. On constraint qualifications: Motivation, design and inter-relations. Journal of Industrial & Management Optimization, 2013, 9 (4) : 983-1001. doi: 10.3934/jimo.2013.9.983 |
[14] |
Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li. Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2269-2290. doi: 10.3934/dcdsb.2015.20.2269 |
[15] |
Hakan Özadam, Ferruh Özbudak. A note on negacyclic and cyclic codes of length $p^s$ over a finite field of characteristic $p$. Advances in Mathematics of Communications, 2009, 3 (3) : 265-271. doi: 10.3934/amc.2009.3.265 |
[16] |
Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047 |
[17] |
Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2021, 13 (1) : 1-23. doi: 10.3934/jgm.2020032 |
[18] |
Prabir Panja, Soovoojeet Jana, Shyamal kumar Mondal. Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 391-405. doi: 10.3934/naco.2020033 |
[19] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[20] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
2019 Impact Factor: 1.105
Tools
Metrics
Other articles
by authors
[Back to Top]