In this work, we are concerned with a class of parabolic-elliptic chemotaxis systems with the prototype given by
$\left\{ \begin{array}{lll}&u_t = \nabla\cdot(\nabla u-\chi u\nabla v)+au-bu^\theta, &x\in \Omega, t>0, \\&0 = \Delta v -v+u^\kappa, & x\in \Omega, t>0 \end{array}\right.$
with nonnegative initial condition for $u$ and homogeneous Neumann boundary conditions in a smooth bounded domain $Ω\subset \mathbb{R}^n(n≥ 2)$, where $χ, b, κ>0$, $a∈ \mathbb{R}$ and $θ>1$.
First, using different ideas from [
$κ+1<\max\{θ, 1+\frac{2}{n}\}$
or
$θ = κ+1, \ \ b≥ \frac{(κ n-2)}{κ n}χ.$
Next, carrying out bifurcation from "old multiplicity", we show that the corresponding stationary system exhibits pattern formation for an unbounded range of chemosensitivity $χ$ and the emerging patterns converge weakly in $ L^θ(Ω)$ to some constants as $χ \to ∞$. This provides more details and also fills up a gap left in Kuto et al. [
Citation: |
[1] | X. Bai and M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583. doi: 10.1512/iumj.2016.65.5776. |
[2] | N. Bellomo, A. Bellouquid, Y. S. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763. doi: 10.1142/S021820251550044X. |
[3] | X. Cao and S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, Math. Methods Appl. Sci., 37 (2014), 2326-2330. doi: 10.1002/mma.2992. |
[4] | A. Friedman, Partial Differential Equations, Holt, Rinehart Winston, New York, 1969. |
[5] | E. Galakhova, O. Salievab and J. Tello, On a Parabolic-Elliptic system with chemotaxis and logistic type growth, J. Differential Equations, 261 (2016), 4631-4647. doi: 10.1016/j.jde.2016.07.008. |
[6] | X. He and S. Zheng, Convergence rate estimates of solutions in a higher dimensional chemotaxis system with logistic source, J. Math. Anal. Appl., 436 (2016), 970-982. doi: 10.1016/j.jmaa.2015.12.058. |
[7] | T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217. doi: 10.1007/s00285-008-0201-3. |
[8] | D. Horstmann, From 1970 until now: the Keller-Segal model in chaemotaxis and its consequence Ⅰ, Jahresber DMV, 105 (2003), 103-165. |
[9] | B. Hu and Y. Tao, Boundedness in a parabolic-elliptic chemotaxis-growth system under a critical parameter condition, Appl. Math. Lett., 64 (2017), 1-7. doi: 10.1016/j.aml.2016.08.003. |
[10] | W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modeling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824. doi: 10.2307/2153966. |
[11] | K. Kang and A. Stevens, Blowup and global solutions in a chemotaxis-growth system, Nonlinear Anal., 135 (2016), 57-72. doi: 10.1016/j.na.2016.01.017. |
[12] | E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret Biol., 26 (1970), 399-415. |
[13] | K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Phys. D, 241 (2012), 1629-1639. doi: 10.1016/j.physd.2012.06.009. |
[14] | O. Ladyzhenskaya, V. Solonnikov and N. Uralceva, Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, RI, 1968. |
[15] | D. Liu and Y. Tao, Boundedness in a chemotaxis system with nonlinear signal production, Appl. Math. J. Chinese Univ. Ser. B, 31 (2016), 379-388. doi: 10.1007/s11766-016-3386-z. |
[16] | Y. Lou and W. M. Ni, Diffusion vs cross-diffusion: an elliptic approach, J. Differential Equations, 154 (1999), 157-190. doi: 10.1006/jdeq.1998.3559. |
[17] | L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Sciences, New York University, New York, 1974. |
[18] | P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Functional Analysis, 7 (1971), 487-513. |
[19] | Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model, Nonlinearity, 27 (2014), 1225-1239. doi: 10.1088/0951-7715/27/6/1225. |
[20] | Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Equations, 259 (2015), 6142-6161. doi: 10.1016/j.jde.2015.07.019. |
[21] | J. Tello and M. Winkler, chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877. doi: 10.1080/03605300701319003. |
[22] | L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source, J. Differential Equations, 256 (2014), 1847-1872. doi: 10.1016/j.jde.2013.12.007. |
[23] | Z. Wang and T. Xiang, A class of chemotaxis systems with growth source and nonlinear secretion, arXiv: 1510.07204, 2015. |
[24] | M. Winkler, Chemotaxis with logistic source: very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 38 (2008), 708-729. doi: 10.1016/j.jmaa.2008.07.071. |
[25] | M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537. doi: 10.1080/03605300903473426. |
[26] | M. Winkler, Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction, J. Math. Anal. Appl., 384 (2011), 261-272. doi: 10.1016/j.jmaa.2011.05.057. |
[27] | M. Winkler, Emergence of large population densities despite logistic growth restrictions in fully parabolic chemotaxis systems, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2777-279. doi: 10.3934/dcdsb.2017135. |
[28] | T. Xiang, Boundedness and global existence in the higher-dimensional parabolic-parabolic chemotaxis system with/without growth source, J. Differential Equations, 258 (2015), 4275-4323. doi: 10.1016/j.jde.2015.01.032. |
[29] | T. Xiang, On a class of Keller-Segel chemotaxis systems with cross-diffusion, J. Differential Equations, 259 (2015), 4273-4326. doi: 10.1016/j.jde.2015.05.021. |
[30] | J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differential Equations, 259 (2015), 120-140. doi: 10.1016/j.jde.2015.02.003. |