    • Previous Article
On the positive semigroups generated by Fleming-Viot type differential operators
• CPAA Home
• This Issue
• Next Article
Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term
January  2019, 18(1): 301-322. doi: 10.3934/cpaa.2019016

## On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities

 1 Department of Mathematics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, Osaka 558-8585 Japan 2 Department of Mathematics, Institute of Applied Mathematical Sciences, National Center for Theoretical Sciences, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan 3 National Center for Theoretical Sciences, No. 1 Sec. 4 Roosevelt Rd., National Taiwan University, Taipei, 10617, Taiwan

* Corresponding author

Received  December 2017 Revised  March 2018 Published  August 2018

Fund Project: The first author is supported by Grant-in-Aid for JSPS Research Fellow (JSPS KAKENHI Grant Number JP16J08945)

Let
 $N ≥ 3$
and
 $Ω \subset \mathbb{R}^N$
be a
 $C^2$
bounded domain. We study the existence of positive solution
 $u ∈ H^1(Ω)$
of
 \begin{align*}\left\{\begin{array}{l}-\Delta u + \lambda u = \frac{|u|^{2^*(s)-2}u}{|x-x_1|^s} + \tau \frac{|u|^{2^*(s)-2}u}{|x-x_2|^s}\text{ in }\Omega\\\frac{\partial u}{\partial \nu} = 0 \text{ on }\partial\Omega,\end{array}\right.\end{align*}
where
 $τ = 1$
or
 $-1$
,
 $0 < s <2$
,
 $2^*(s) = \frac{2(N-s)}{N-2}$
and
 $x_1, x_2 ∈ \overline{Ω}$
with
 $x_1 ≠ x_2$
. First, we show the existence of positive solutions to the equation provided the positive
 $λ$
is small enough. In case that one of the singularities locates on the boundary and the mean curvature of the boundary at this singularity is positive, the existence of positive solutions is obtained for any
 $λ > 0$
and some
 $s$
depending on
 $τ$
and
 $N$
. Furthermore, we extend the existence theory of solutions to the equations for the case of the multiple singularities.
Citation: Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016
##### References:
  T. Bartsch, S. Peng and Z. Zhang, Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Diff. Equ., 30 (2007), 113-136.  doi: 10.1007/s00526-006-0086-1.  Google Scholar  G. Cerami, X. Zhong and W. Zou, On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem, Calc. Var. Partial Diff. Equ., 54 (2015), 1793-1829.  doi: 10.1007/s00526-015-0844-z.  Google Scholar  J. Chabrowski, On the Neumann problem with the Hardy-Sobolev potential, Annali di Matematica, 186 (2007), 703-719.  doi: 10.1007/s10231-006-0027-9.  Google Scholar  N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), 767-793.  doi: 10.1016/j.anihpc.2003.07.002.  Google Scholar  N. Ghoussoub and F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth, IMRP Int. Math. Res. Pap., 21867 (2006), 1-85. Google Scholar  N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal. 16 (2006), 1201-1245. doi: 10.1007/s00039-006-0579-2.  Google Scholar  N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.  doi: 10.1090/S0002-9947-00-02560-5.  Google Scholar  M. Hashizume, Asymptotic behavior of the least-energy solutions of a semilinear elliptic equation with the Hardy-Sobolev critical exponent, J. Differential Equations, 262 (2017), 3107-3131.  doi: 10.1016/j.jde.2016.11.005.  Google Scholar  C. Hsia, C. Lin and H. Wadade, Revisiting an idea of Brézis and Nirenberg, J. Funct. Anal., 259 (2010), 1816-1849.  doi: 10.1016/j.jfa.2010.05.004.  Google Scholar  Y. Li and C.-S. Lin, A nonlinear elliptic pde with two Sobolev-Hardy critical exponents, Arch. Ration. Mech. Anal, 203 (2012), 943-968.  doi: 10.1007/s00205-011-0467-2.  Google Scholar  E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequal ities, Ann. of Math, 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar  P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoamericana, 1 (1985), 145-201.  doi: 10.4171/RMI/6.  Google Scholar  R. Musina, Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal, 68 (2008), 3972-3986.  doi: 10.1016/j.na.2007.04.034.  Google Scholar  M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar  J.-L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar  X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283-310.  doi: 10.1016/0022-0396(91)90014-Z.  Google Scholar  X.-X. Zhong and W.-M. Zou, A nonlinear elliptic PDE with multiple Hardy-Sobolev critical exponents in $\mathbb{R}^N$, arXiv: 1504.01133. Google Scholar

show all references

##### References:
  T. Bartsch, S. Peng and Z. Zhang, Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Diff. Equ., 30 (2007), 113-136.  doi: 10.1007/s00526-006-0086-1.  Google Scholar  G. Cerami, X. Zhong and W. Zou, On some nonlinear elliptic PDEs with Sobolev-Hardy critical exponents and a Li-Lin open problem, Calc. Var. Partial Diff. Equ., 54 (2015), 1793-1829.  doi: 10.1007/s00526-015-0844-z.  Google Scholar  J. Chabrowski, On the Neumann problem with the Hardy-Sobolev potential, Annali di Matematica, 186 (2007), 703-719.  doi: 10.1007/s10231-006-0027-9.  Google Scholar  N. Ghoussoub and X. S. Kang, Hardy-Sobolev critical elliptic equations with boundary singularities, Ann. Inst. H. Poincare Anal. Non Lineaire, 21 (2004), 767-793.  doi: 10.1016/j.anihpc.2003.07.002.  Google Scholar  N. Ghoussoub and F. Robert, Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth, IMRP Int. Math. Res. Pap., 21867 (2006), 1-85. Google Scholar  N. Ghoussoub and F. Robert, The effect of curvature on the best constant in the Hardy-Sobolev inequalities, Geom. Funct. Anal. 16 (2006), 1201-1245. doi: 10.1007/s00039-006-0579-2.  Google Scholar  N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.  doi: 10.1090/S0002-9947-00-02560-5.  Google Scholar  M. Hashizume, Asymptotic behavior of the least-energy solutions of a semilinear elliptic equation with the Hardy-Sobolev critical exponent, J. Differential Equations, 262 (2017), 3107-3131.  doi: 10.1016/j.jde.2016.11.005.  Google Scholar  C. Hsia, C. Lin and H. Wadade, Revisiting an idea of Brézis and Nirenberg, J. Funct. Anal., 259 (2010), 1816-1849.  doi: 10.1016/j.jfa.2010.05.004.  Google Scholar  Y. Li and C.-S. Lin, A nonlinear elliptic pde with two Sobolev-Hardy critical exponents, Arch. Ration. Mech. Anal, 203 (2012), 943-968.  doi: 10.1007/s00205-011-0467-2.  Google Scholar  E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequal ities, Ann. of Math, 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar  P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. Ⅰ, Rev. Mat. Iberoamericana, 1 (1985), 145-201.  doi: 10.4171/RMI/6.  Google Scholar  R. Musina, Ground state solutions of a critical problem involving cylindrical weights, Nonlinear Anal, 68 (2008), 3972-3986.  doi: 10.1016/j.na.2007.04.034.  Google Scholar  M. Struwe, Variational Methods, Springer-Verlag, Berlin, 1990. doi: 10.1007/978-3-662-02624-3.  Google Scholar  J.-L. Vázquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., 12 (1984), 191-202.  doi: 10.1007/BF01449041.  Google Scholar  X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents, J. Differential Equations, 93 (1991), 283-310.  doi: 10.1016/0022-0396(91)90014-Z.  Google Scholar  X.-X. Zhong and W.-M. Zou, A nonlinear elliptic PDE with multiple Hardy-Sobolev critical exponents in $\mathbb{R}^N$, arXiv: 1504.01133. Google Scholar
  Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure & Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191  Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239  Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123  Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527  José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138  Shota Sato, Eiji Yanagida. Forward self-similar solution with a moving singularity for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 313-331. doi: 10.3934/dcds.2010.26.313  Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure & Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571  Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061  Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834  Xing Liu, Yijing Sun. Multiple positive solutions for Kirchhoff type problems with singularity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 721-733. doi: 10.3934/cpaa.2013.12.721  Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225  Takahiro Hashimoto. Nonexistence of positive solutions of quasilinear elliptic equations with singularity on the boundary in strip-like domains. Conference Publications, 2005, 2005 (Special) : 376-385. doi: 10.3934/proc.2005.2005.376  Futoshi Takahashi. An eigenvalue problem related to blowing-up solutions for a semilinear elliptic equation with the critical Sobolev exponent. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 907-922. doi: 10.3934/dcdss.2011.4.907  Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101  Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655  Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359  Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control & Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018  Zhibo Cheng, Jingli Ren. Periodic and subharmonic solutions for duffing equation with a singularity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1557-1574. doi: 10.3934/dcds.2012.32.1557  Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27  Shengbing Deng, Fethi Mahmoudi, Monica Musso. Bubbling on boundary submanifolds for a semilinear Neumann problem near high critical exponents. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3035-3076. doi: 10.3934/dcds.2016.36.3035

2018 Impact Factor: 0.925