• Previous Article
    Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions
  • CPAA Home
  • This Issue
  • Next Article
    Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems
January  2019, 18(1): 397-424. doi: 10.3934/cpaa.2019020

Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators

Department of Mathematics, Dogus University, Acıbadem, 34722, Kadiköy, Istanbul, Turkey

Received  January 2018 Revised  April 2018 Published  August 2018

In this paper we construct the spectral expansion for the differential operator generated in $L_{2}(-∞, ∞)$ by ordinary differential expression of arbitrary order with periodic complex-valued coefficients by introducing new concepts as essential spectral singularities and singular quasimomenta and using the series with parenthesis. Moreover, we find a criteria for which the spectral expansion coincides with the Gelfand expansion for the self-adjoint case.

Citation: Oktay Veliev. Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 397-424. doi: 10.3934/cpaa.2019020
References:
[1]

M. G. Gasymov, Spectral analysis of a class of second-order nonself-adjoint differential oper ators, Fankts. Anal. Prilozhen, 14 (1980), 14-19.   Google Scholar

[2]

I. M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients, Sov. Math. Dokl., 73 (1950), 1117-1120.   Google Scholar

[3]

F. Gesztesy and V. Tkachenko, A criterion for Hill's operators to be spectral operators of scalar type, J. Analyse Math., 107 (2009), 287-353.  doi: 10.1007/s11854-009-0012-5.  Google Scholar

[4]

D. C. McGarvey, Differential operators with periodic coefficients in Lp(-∞, ∞), Journal of Mathematical Analysis and Applications, 11 (1965), 564-596.  doi: 10.1016/0022-247X(65)90105-8.  Google Scholar

[5]

V. P. Mikhailov, On the Riesz bases in L2(0, 1), Sov. Math. Dokl., 25 (1962), 981-984.   Google Scholar

[6]

M. A. Naimark, Linear Differential Operators, George G. Harrap, London, 1967.  Google Scholar

[7]

F. S. Rofe-Beketov, The spectrum of nonself-adjoint differential operators with periodic coef ficients, Sov. Math. Dokl., 4 (1963), 1563-1564.   Google Scholar

[8]

E. C. Titchmarsh, Eigenfunction Expansion (Part II), Oxford Univ. Press, 1958. Google Scholar

[9]

V. A. Tkachenko, Eigenfunction expansions associated with one-dimensional periodic differ ential operators of order 2n, Funktsional. Anal. i Prilozhen, 41 (2007), 66-89.  doi: 10.1007/s10688-007-0005-z.  Google Scholar

[10]

O. A. Veliev, The spectrum and spectral singularities of differential operators with complex valued periodic coefficients, Differential Cprime Nye Uravneniya, 19 (1983), 1316-1324.   Google Scholar

[11]

O. A. Veliev, The spectral resolution of the nonself-adjoint differential operators with periodic coefficients, Differential Cprime Nye Uravneniya, 22 (1986), 2052-2059.   Google Scholar

[12]

O. A. Veliev, Spectral expansion for a non-self-adjoint periodic differential operator, Russian Journal of Mathematical Physics, 13 (2006), 101-110.  doi: 10.1134/S1061920806010109.  Google Scholar

[13]

O. A. Veliev, Uniform convergence of the spectral expansion for a differential operator with periodic matrix coefficients, Boundary Value Problems, Volume 2008, Article ID 628973, 22 pp. (2008).  Google Scholar

[14]

O. A. Veliev, Asymptotic analysis of non-self-adjoint Hill's operators, Central European Jour nal of Mathematics, 11 (2013), 2234-2256.  doi: 10.2478/s11533-013-0305-x.  Google Scholar

[15]

O. A. Veliev, On the spectral singularities and spectrality of the Hill operator, Operators and Matrices, 10 (2016), 57-71.  doi: 10.7153/oam-10-05.  Google Scholar

[16]

O. A. Veliev, Essential spectral singularities and the spectral expansion for the Hill operator, Communication on Pure and Applied Analysis, 16 (2017), 2227-2251.  doi: 10.3934/cpaa.2017110.  Google Scholar

show all references

References:
[1]

M. G. Gasymov, Spectral analysis of a class of second-order nonself-adjoint differential oper ators, Fankts. Anal. Prilozhen, 14 (1980), 14-19.   Google Scholar

[2]

I. M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients, Sov. Math. Dokl., 73 (1950), 1117-1120.   Google Scholar

[3]

F. Gesztesy and V. Tkachenko, A criterion for Hill's operators to be spectral operators of scalar type, J. Analyse Math., 107 (2009), 287-353.  doi: 10.1007/s11854-009-0012-5.  Google Scholar

[4]

D. C. McGarvey, Differential operators with periodic coefficients in Lp(-∞, ∞), Journal of Mathematical Analysis and Applications, 11 (1965), 564-596.  doi: 10.1016/0022-247X(65)90105-8.  Google Scholar

[5]

V. P. Mikhailov, On the Riesz bases in L2(0, 1), Sov. Math. Dokl., 25 (1962), 981-984.   Google Scholar

[6]

M. A. Naimark, Linear Differential Operators, George G. Harrap, London, 1967.  Google Scholar

[7]

F. S. Rofe-Beketov, The spectrum of nonself-adjoint differential operators with periodic coef ficients, Sov. Math. Dokl., 4 (1963), 1563-1564.   Google Scholar

[8]

E. C. Titchmarsh, Eigenfunction Expansion (Part II), Oxford Univ. Press, 1958. Google Scholar

[9]

V. A. Tkachenko, Eigenfunction expansions associated with one-dimensional periodic differ ential operators of order 2n, Funktsional. Anal. i Prilozhen, 41 (2007), 66-89.  doi: 10.1007/s10688-007-0005-z.  Google Scholar

[10]

O. A. Veliev, The spectrum and spectral singularities of differential operators with complex valued periodic coefficients, Differential Cprime Nye Uravneniya, 19 (1983), 1316-1324.   Google Scholar

[11]

O. A. Veliev, The spectral resolution of the nonself-adjoint differential operators with periodic coefficients, Differential Cprime Nye Uravneniya, 22 (1986), 2052-2059.   Google Scholar

[12]

O. A. Veliev, Spectral expansion for a non-self-adjoint periodic differential operator, Russian Journal of Mathematical Physics, 13 (2006), 101-110.  doi: 10.1134/S1061920806010109.  Google Scholar

[13]

O. A. Veliev, Uniform convergence of the spectral expansion for a differential operator with periodic matrix coefficients, Boundary Value Problems, Volume 2008, Article ID 628973, 22 pp. (2008).  Google Scholar

[14]

O. A. Veliev, Asymptotic analysis of non-self-adjoint Hill's operators, Central European Jour nal of Mathematics, 11 (2013), 2234-2256.  doi: 10.2478/s11533-013-0305-x.  Google Scholar

[15]

O. A. Veliev, On the spectral singularities and spectrality of the Hill operator, Operators and Matrices, 10 (2016), 57-71.  doi: 10.7153/oam-10-05.  Google Scholar

[16]

O. A. Veliev, Essential spectral singularities and the spectral expansion for the Hill operator, Communication on Pure and Applied Analysis, 16 (2017), 2227-2251.  doi: 10.3934/cpaa.2017110.  Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[3]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[4]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[5]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[6]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[7]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[8]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[11]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[12]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[13]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[14]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[15]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[16]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[17]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (75)
  • HTML views (140)
  • Cited by (2)

Other articles
by authors

[Back to Top]