• Previous Article
    Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions
  • CPAA Home
  • This Issue
  • Next Article
    Spreading speeds and traveling waves for space-time periodic nonlocal dispersal cooperative systems
January  2019, 18(1): 397-424. doi: 10.3934/cpaa.2019020

Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators

Department of Mathematics, Dogus University, Acıbadem, 34722, Kadiköy, Istanbul, Turkey

Received  January 2018 Revised  April 2018 Published  August 2018

In this paper we construct the spectral expansion for the differential operator generated in $L_{2}(-∞, ∞)$ by ordinary differential expression of arbitrary order with periodic complex-valued coefficients by introducing new concepts as essential spectral singularities and singular quasimomenta and using the series with parenthesis. Moreover, we find a criteria for which the spectral expansion coincides with the Gelfand expansion for the self-adjoint case.

Citation: Oktay Veliev. Spectral expansion series with parenthesis for the nonself-adjoint periodic differential operators. Communications on Pure & Applied Analysis, 2019, 18 (1) : 397-424. doi: 10.3934/cpaa.2019020
References:
[1]

M. G. Gasymov, Spectral analysis of a class of second-order nonself-adjoint differential oper ators, Fankts. Anal. Prilozhen, 14 (1980), 14-19.   Google Scholar

[2]

I. M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients, Sov. Math. Dokl., 73 (1950), 1117-1120.   Google Scholar

[3]

F. Gesztesy and V. Tkachenko, A criterion for Hill's operators to be spectral operators of scalar type, J. Analyse Math., 107 (2009), 287-353.  doi: 10.1007/s11854-009-0012-5.  Google Scholar

[4]

D. C. McGarvey, Differential operators with periodic coefficients in Lp(-∞, ∞), Journal of Mathematical Analysis and Applications, 11 (1965), 564-596.  doi: 10.1016/0022-247X(65)90105-8.  Google Scholar

[5]

V. P. Mikhailov, On the Riesz bases in L2(0, 1), Sov. Math. Dokl., 25 (1962), 981-984.   Google Scholar

[6]

M. A. Naimark, Linear Differential Operators, George G. Harrap, London, 1967.  Google Scholar

[7]

F. S. Rofe-Beketov, The spectrum of nonself-adjoint differential operators with periodic coef ficients, Sov. Math. Dokl., 4 (1963), 1563-1564.   Google Scholar

[8]

E. C. Titchmarsh, Eigenfunction Expansion (Part II), Oxford Univ. Press, 1958. Google Scholar

[9]

V. A. Tkachenko, Eigenfunction expansions associated with one-dimensional periodic differ ential operators of order 2n, Funktsional. Anal. i Prilozhen, 41 (2007), 66-89.  doi: 10.1007/s10688-007-0005-z.  Google Scholar

[10]

O. A. Veliev, The spectrum and spectral singularities of differential operators with complex valued periodic coefficients, Differential Cprime Nye Uravneniya, 19 (1983), 1316-1324.   Google Scholar

[11]

O. A. Veliev, The spectral resolution of the nonself-adjoint differential operators with periodic coefficients, Differential Cprime Nye Uravneniya, 22 (1986), 2052-2059.   Google Scholar

[12]

O. A. Veliev, Spectral expansion for a non-self-adjoint periodic differential operator, Russian Journal of Mathematical Physics, 13 (2006), 101-110.  doi: 10.1134/S1061920806010109.  Google Scholar

[13]

O. A. Veliev, Uniform convergence of the spectral expansion for a differential operator with periodic matrix coefficients, Boundary Value Problems, Volume 2008, Article ID 628973, 22 pp. (2008).  Google Scholar

[14]

O. A. Veliev, Asymptotic analysis of non-self-adjoint Hill's operators, Central European Jour nal of Mathematics, 11 (2013), 2234-2256.  doi: 10.2478/s11533-013-0305-x.  Google Scholar

[15]

O. A. Veliev, On the spectral singularities and spectrality of the Hill operator, Operators and Matrices, 10 (2016), 57-71.  doi: 10.7153/oam-10-05.  Google Scholar

[16]

O. A. Veliev, Essential spectral singularities and the spectral expansion for the Hill operator, Communication on Pure and Applied Analysis, 16 (2017), 2227-2251.  doi: 10.3934/cpaa.2017110.  Google Scholar

show all references

References:
[1]

M. G. Gasymov, Spectral analysis of a class of second-order nonself-adjoint differential oper ators, Fankts. Anal. Prilozhen, 14 (1980), 14-19.   Google Scholar

[2]

I. M. Gelfand, Expansion in series of eigenfunctions of an equation with periodic coefficients, Sov. Math. Dokl., 73 (1950), 1117-1120.   Google Scholar

[3]

F. Gesztesy and V. Tkachenko, A criterion for Hill's operators to be spectral operators of scalar type, J. Analyse Math., 107 (2009), 287-353.  doi: 10.1007/s11854-009-0012-5.  Google Scholar

[4]

D. C. McGarvey, Differential operators with periodic coefficients in Lp(-∞, ∞), Journal of Mathematical Analysis and Applications, 11 (1965), 564-596.  doi: 10.1016/0022-247X(65)90105-8.  Google Scholar

[5]

V. P. Mikhailov, On the Riesz bases in L2(0, 1), Sov. Math. Dokl., 25 (1962), 981-984.   Google Scholar

[6]

M. A. Naimark, Linear Differential Operators, George G. Harrap, London, 1967.  Google Scholar

[7]

F. S. Rofe-Beketov, The spectrum of nonself-adjoint differential operators with periodic coef ficients, Sov. Math. Dokl., 4 (1963), 1563-1564.   Google Scholar

[8]

E. C. Titchmarsh, Eigenfunction Expansion (Part II), Oxford Univ. Press, 1958. Google Scholar

[9]

V. A. Tkachenko, Eigenfunction expansions associated with one-dimensional periodic differ ential operators of order 2n, Funktsional. Anal. i Prilozhen, 41 (2007), 66-89.  doi: 10.1007/s10688-007-0005-z.  Google Scholar

[10]

O. A. Veliev, The spectrum and spectral singularities of differential operators with complex valued periodic coefficients, Differential Cprime Nye Uravneniya, 19 (1983), 1316-1324.   Google Scholar

[11]

O. A. Veliev, The spectral resolution of the nonself-adjoint differential operators with periodic coefficients, Differential Cprime Nye Uravneniya, 22 (1986), 2052-2059.   Google Scholar

[12]

O. A. Veliev, Spectral expansion for a non-self-adjoint periodic differential operator, Russian Journal of Mathematical Physics, 13 (2006), 101-110.  doi: 10.1134/S1061920806010109.  Google Scholar

[13]

O. A. Veliev, Uniform convergence of the spectral expansion for a differential operator with periodic matrix coefficients, Boundary Value Problems, Volume 2008, Article ID 628973, 22 pp. (2008).  Google Scholar

[14]

O. A. Veliev, Asymptotic analysis of non-self-adjoint Hill's operators, Central European Jour nal of Mathematics, 11 (2013), 2234-2256.  doi: 10.2478/s11533-013-0305-x.  Google Scholar

[15]

O. A. Veliev, On the spectral singularities and spectrality of the Hill operator, Operators and Matrices, 10 (2016), 57-71.  doi: 10.7153/oam-10-05.  Google Scholar

[16]

O. A. Veliev, Essential spectral singularities and the spectral expansion for the Hill operator, Communication on Pure and Applied Analysis, 16 (2017), 2227-2251.  doi: 10.3934/cpaa.2017110.  Google Scholar

[1]

David Damanik, Zheng Gan. Spectral properties of limit-periodic Schrödinger operators. Communications on Pure & Applied Analysis, 2011, 10 (3) : 859-871. doi: 10.3934/cpaa.2011.10.859

[2]

Sarah Constantin, Robert S. Strichartz, Miles Wheeler. Analysis of the Laplacian and spectral operators on the Vicsek set. Communications on Pure & Applied Analysis, 2011, 10 (1) : 1-44. doi: 10.3934/cpaa.2011.10.1

[3]

Damien Thomine. A spectral gap for transfer operators of piecewise expanding maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 917-944. doi: 10.3934/dcds.2011.30.917

[4]

Paul Loya and Jinsung Park. On gluing formulas for the spectral invariants of Dirac type operators. Electronic Research Announcements, 2005, 11: 1-11.

[5]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 0-0. doi: 10.3934/dcds.2020054

[6]

O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2227-2251. doi: 10.3934/cpaa.2017110

[7]

Bertrand Lods, Mustapha Mokhtar-Kharroubi, Mohammed Sbihi. Spectral properties of general advection operators and weighted translation semigroups. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1469-1492. doi: 10.3934/cpaa.2009.8.1469

[8]

Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems & Imaging, 2009, 3 (1) : 139-149. doi: 10.3934/ipi.2009.3.139

[9]

Vesselin Petkov, Luchezar Stoyanov. Spectral estimates for Ruelle operators with two parameters and sharp large deviations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6391-6417. doi: 10.3934/dcds.2019277

[10]

Matthias Täufer, Martin Tautenhahn. Scale-free and quantitative unique continuation for infinite dimensional spectral subspaces of Schrödinger operators. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1719-1730. doi: 10.3934/cpaa.2017083

[11]

Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147

[12]

Erik Kropat, Silja Meyer-Nieberg, Gerhard-Wilhelm Weber. Computational networks and systems-homogenization of self-adjoint differential operators in variational form on periodic networks and micro-architectured systems. Numerical Algebra, Control & Optimization, 2017, 7 (2) : 139-169. doi: 10.3934/naco.2017010

[13]

Nuno Costa Dias, Andrea Posilicano, João Nuno Prata. Self-adjoint, globally defined Hamiltonian operators for systems with boundaries. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1687-1706. doi: 10.3934/cpaa.2011.10.1687

[14]

Abdallah El Hamidi, Aziz Hamdouni, Marwan Saleh. On eigenelements sensitivity for compact self-adjoint operators and applications. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 445-455. doi: 10.3934/dcdss.2016006

[15]

Rúben Sousa, Semyon Yakubovich. The spectral expansion approach to index transforms and connections with the theory of diffusion processes. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2351-2378. doi: 10.3934/cpaa.2018112

[16]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[17]

P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233

[18]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[19]

Jean Bourgain. On quasi-periodic lattice Schrödinger operators. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 75-88. doi: 10.3934/dcds.2004.10.75

[20]

Kei Irie. Dense existence of periodic Reeb orbits and ECH spectral invariants. Journal of Modern Dynamics, 2015, 9: 357-363. doi: 10.3934/jmd.2015.9.357

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (29)
  • HTML views (98)
  • Cited by (0)

Other articles
by authors

[Back to Top]