Consider the second order self-adjoint discrete Hamiltonian system
$\triangle [p(n)\triangle u(n-1)]-L(n)u(n)+\nabla W(n, u(n)) = 0, $
where $p(n), L(n)$ and $W(n, x)$ are $N$-periodic on $n$, and 0 lies in a gap of the spectrum $σ(\mathcal{A})$of the operator $\mathcal{A}$, which is bounded self-adjoint in $l^2(\mathbb{Z}, \mathbb{R}^{\mathcal{N}})$ defined by $(\mathcal{A}u)(n) = \triangle [p(n)\triangle u(n-1)]-L(n)u(n)$. We obtain a sufficient condition on the existence of nontrivial homoclinic orbits for the above system under a much weaker condition than $\lim_{|x|\to ∞}\frac{W(n, x)}{|x|^2} = ∞$ uniformly in $ n∈ \mathbb{Z}$, which has been a common condition used in the existing literature. We also give three examples to illustrate our result.
Citation: |
R. P. Agarwal, Difference Equations and Inequalities: Theory, Metho and Applications, second edition, Marcel Dekker, Inc. 2000.
![]() ![]() |
|
C. D. Ahlbran and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations, Kluwer Academic, Dordrecht, 1996.
doi: 10.1007/978-1-4757-2467-7.![]() ![]() ![]() |
|
Z. Balanov
, C. Carcía - Azpeitia
and W. Krawcewicz
, On Variational and Topological Methods in Nonlinear Difference Equations, Commun. Pure Appl. Anal., 17 (2018)
, 2813-2844.
doi: 10.3934/cpaa.2018133.![]() ![]() ![]() |
|
V. Coti Zelati
, I. Ekeland
and E. Sere
, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990)
, 133-160.
doi: 10.1007/BF01444526.![]() ![]() ![]() |
|
V. Coti Zelati
and P. H. Rabinowitz
, Homoclinic orbits for second second order Hamiltonian
systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991)
, 693-727.
doi: 10.2307/2939286.![]() ![]() ![]() |
|
D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.
![]() ![]() |
|
Z. M. Guo
and J. S. Yu
, The existence of periodic and subharmonic solutions of subquadratic second order difference equation, J. London Math. Soc., 68 (2003)
, 419-430.
doi: 10.1112/S0024610703004563.![]() ![]() ![]() |
|
M. Izydorek
and J. Janczewska
, Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations, 219 (2005)
, 375-389.
doi: 10.1016/j.jde.2005.06.029.![]() ![]() ![]() |
|
G. B. Li
and A. Szulkin
, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002)
, 763-776.
doi: 10.1142/S0219199702000853.![]() ![]() ![]() |
|
G. H. Lin
and Z. Zhou
, Homoclinic solutions of discrete φ- Laplacian equations with mixed nonlinearities, Commun. Pure Appl. Anal., 17 (2018)
, 1723-1747.
doi: 10.3934/cpaa.2018082.![]() ![]() ![]() |
|
X. Y. Lin
and X. H. Tang
, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems, J. Math. Anal. Appl., 373 (2011)
, 59-72.
doi: 10.1016/j.jmaa.2010.06.008.![]() ![]() ![]() |
|
Z. L. Liu
and Z.-Q. Wang
, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004)
, 561-572.
doi: 10.1515/ans-2004-0411.![]() ![]() ![]() |
|
W. Omana
and M. Willem
, Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 5 (1992)
, 1115-1120.
![]() ![]() |
|
P. H. Rabinowitz
, Homoclinic orbits for a class of Hamiltonian systems, Proc, Roy. Soc. Edinburgh Sect. A, 114 (1990)
, 33-38.
doi: 10.1017/S0308210500024240.![]() ![]() ![]() |
|
P. H. Rabinowitz
and K. Tanaka
, Some results on connecting orbits for a class of Hamiltonian
systems, Math. Z., 206 (1991)
, 473-499.
doi: 10.1007/BF02571356.![]() ![]() ![]() |
|
X. H. Tang
, Non-Nehari manifold method for asymptotically linear Schr¨odinger equation, J. Aust. Math. Soc., 98 (2015)
, 104-116.
doi: 10.1017/S144678871400041X.![]() ![]() ![]() |
|
X. H. Tang
and S. T. Chen
, Ground state solutions of Nehari-Pohozaev type for SchrödingerPoisson problems with general potentials, Disc. Contin. Dyn. Syst.-Series A., 37 (2017)
, 4973-5002.
doi: 10.3934/dcds.2017214.![]() ![]() ![]() |
|
X. H. Tang
and X. Y. Lin
, Existence and multiplicity of homoclinic solutions for second-order
discrete Hamiltonian systems with subquadratic potential, J. Differ. Equ. Appl., 17 (2011)
, 1617-1634.
doi: 10.1080/10236191003730514.![]() ![]() ![]() |
|
X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat..
doi: 10.1007/s10884-018-9662-2.![]() ![]() |
|
H. F. Xiao
and J. S. Yu
, Heteroclinic orbits for a discrete pendulum equation, J. Difference Equ. Appl., 17 (2011)
, 1267-1280.
doi: 10.1080/10236190903167991.![]() ![]() ![]() |
|
J. S. Yu
and Z. M. Guo
, Homoclinic orbits for nonlinear difference equations containing
both advance and retardation, J. Math. Anal. Appl., 352 (2009)
, 799-806.
doi: 10.1016/j.jmaa.2008.11.043.![]() ![]() ![]() |
|
Q. Zhang
, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., 143 (2015)
, 3155-3163.
doi: 10.1090/S0002-9939-2015-12107-7.![]() ![]() ![]() |
|
Q. Zhang
, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part and
super linear terms, Commun. Pure Appl. Anal., 14 (2015)
, 1929-1940.
doi: 10.3934/cpaa.2015.14.1929.![]() ![]() ![]() |
|
Z. Zhou
and J. S. Yu
, On the existence of homoclinic solutions of a class of discrete nonlinear
periodic systems, J. Differential Equations, 249 (2010)
, 1199-1212.
doi: 10.1016/j.jde.2010.03.010.![]() ![]() ![]() |
|
Z. Zhou
, J. S. Yu
and Y. Chen
, Homoclinic solutions in periodic difference equations with
saturable nonlinearity, Science China, Mathematics, 54 (2011)
, 83-93.
doi: 10.1007/s11425-010-4101-9.![]() ![]() ![]() |