January  2019, 18(1): 425-434. doi: 10.3934/cpaa.2019021

Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions

Center for Applied Mathematics, Guangzhou University, Guangzhou, Guangdong, 510006, China

* Corresponding author

Received  February 2018 Revised  April 2018 Published  August 2018

Fund Project: This work was partially supported by National Natural Science Foundation of China grant 11471085 and the Program for Changjiang Scholars and Innovative Research Team in University grant IRT1226.

Consider the second order self-adjoint discrete Hamiltonian system
$\triangle [p(n)\triangle u(n-1)]-L(n)u(n)+\nabla W(n, u(n)) = 0, $
where
$p(n), L(n)$
and
$W(n, x)$
are
$N$
-periodic on
$n$
, and
zhongwenzy$
lies in a gap of the spectrum
$σ(\mathcal{A})$
of the operator
$\mathcal{A}$
, which is bounded self-adjoint in
$l^2(\mathbb{Z}, \mathbb{R}^{\mathcal{N}})$
defined by
$(\mathcal{A}u)(n) = \triangle [p(n)\triangle u(n-1)]-L(n)u(n)$
. We obtain a sufficient condition on the existence of nontrivial homoclinic orbits for the above system under a much weaker condition than
$\lim_{|x|\to ∞}\frac{W(n, x)}{|x|^2} = ∞$
uniformly in
$ n∈ \mathbb{Z}$
, which has been a common condition used in the existing literature. We also give three examples to illustrate our result.
Citation: Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure & Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021
References:
[1]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Metho and Applications, second edition, Marcel Dekker, Inc. 2000.  Google Scholar

[2]

C. D. Ahlbran and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations, Kluwer Academic, Dordrecht, 1996. doi: 10.1007/978-1-4757-2467-7.  Google Scholar

[3]

Z. BalanovC. Carcía - Azpeitia and W. Krawcewicz, On Variational and Topological Methods in Nonlinear Difference Equations, Commun. Pure Appl. Anal., 17 (2018), 2813-2844.  doi: 10.3934/cpaa.2018133.  Google Scholar

[4]

V. Coti ZelatiI. Ekeland and E. Sere, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), 133-160.  doi: 10.1007/BF01444526.  Google Scholar

[5]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727.  doi: 10.2307/2939286.  Google Scholar

[6]

D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.  Google Scholar

[7]

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equation, J. London Math. Soc., 68 (2003), 419-430.  doi: 10.1112/S0024610703004563.  Google Scholar

[8]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[9]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.  doi: 10.1142/S0219199702000853.  Google Scholar

[10]

G. H. Lin and Z. Zhou, Homoclinic solutions of discrete φ- Laplacian equations with mixed nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1723-1747.  doi: 10.3934/cpaa.2018082.  Google Scholar

[11]

X. Y. Lin and X. H. Tang, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems, J. Math. Anal. Appl., 373 (2011), 59-72.  doi: 10.1016/j.jmaa.2010.06.008.  Google Scholar

[12]

Z. L. Liu and Z.-Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 561-572.  doi: 10.1515/ans-2004-0411.  Google Scholar

[13]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 5 (1992), 1115-1120.   Google Scholar

[14]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc, Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.  doi: 10.1017/S0308210500024240.  Google Scholar

[15]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), 473-499.  doi: 10.1007/BF02571356.  Google Scholar

[16]

X. H. Tang, Non-Nehari manifold method for asymptotically linear Schr¨odinger equation, J. Aust. Math. Soc., 98 (2015), 104-116.  doi: 10.1017/S144678871400041X.  Google Scholar

[17]

X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohozaev type for SchrödingerPoisson problems with general potentials, Disc. Contin. Dyn. Syst.-Series A., 37 (2017), 4973-5002.  doi: 10.3934/dcds.2017214.  Google Scholar

[18]

X. H. Tang and X. Y. Lin, Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential, J. Differ. Equ. Appl., 17 (2011), 1617-1634.  doi: 10.1080/10236191003730514.  Google Scholar

[19]

X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat.. doi: 10.1007/s10884-018-9662-2.  Google Scholar

[20]

H. F. Xiao and J. S. Yu, Heteroclinic orbits for a discrete pendulum equation, J. Difference Equ. Appl., 17 (2011), 1267-1280.  doi: 10.1080/10236190903167991.  Google Scholar

[21]

J. S. Yu and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl., 352 (2009), 799-806.  doi: 10.1016/j.jmaa.2008.11.043.  Google Scholar

[22]

Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., 143 (2015), 3155-3163.  doi: 10.1090/S0002-9939-2015-12107-7.  Google Scholar

[23]

Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part and super linear terms, Commun. Pure Appl. Anal., 14 (2015), 1929-1940.  doi: 10.3934/cpaa.2015.14.1929.  Google Scholar

[24]

Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212.  doi: 10.1016/j.jde.2010.03.010.  Google Scholar

[25]

Z. ZhouJ. S. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Science China, Mathematics, 54 (2011), 83-93.  doi: 10.1007/s11425-010-4101-9.  Google Scholar

show all references

References:
[1]

R. P. Agarwal, Difference Equations and Inequalities: Theory, Metho and Applications, second edition, Marcel Dekker, Inc. 2000.  Google Scholar

[2]

C. D. Ahlbran and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fraction and Riccati Equations, Kluwer Academic, Dordrecht, 1996. doi: 10.1007/978-1-4757-2467-7.  Google Scholar

[3]

Z. BalanovC. Carcía - Azpeitia and W. Krawcewicz, On Variational and Topological Methods in Nonlinear Difference Equations, Commun. Pure Appl. Anal., 17 (2018), 2813-2844.  doi: 10.3934/cpaa.2018133.  Google Scholar

[4]

V. Coti ZelatiI. Ekeland and E. Sere, A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann., 288 (1990), 133-160.  doi: 10.1007/BF01444526.  Google Scholar

[5]

V. Coti Zelati and P. H. Rabinowitz, Homoclinic orbits for second second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4 (1991), 693-727.  doi: 10.2307/2939286.  Google Scholar

[6]

D. E. Edmunds, W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.  Google Scholar

[7]

Z. M. Guo and J. S. Yu, The existence of periodic and subharmonic solutions of subquadratic second order difference equation, J. London Math. Soc., 68 (2003), 419-430.  doi: 10.1112/S0024610703004563.  Google Scholar

[8]

M. Izydorek and J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Differential Equations, 219 (2005), 375-389.  doi: 10.1016/j.jde.2005.06.029.  Google Scholar

[9]

G. B. Li and A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.  doi: 10.1142/S0219199702000853.  Google Scholar

[10]

G. H. Lin and Z. Zhou, Homoclinic solutions of discrete φ- Laplacian equations with mixed nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1723-1747.  doi: 10.3934/cpaa.2018082.  Google Scholar

[11]

X. Y. Lin and X. H. Tang, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems, J. Math. Anal. Appl., 373 (2011), 59-72.  doi: 10.1016/j.jmaa.2010.06.008.  Google Scholar

[12]

Z. L. Liu and Z.-Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 561-572.  doi: 10.1515/ans-2004-0411.  Google Scholar

[13]

W. Omana and M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Differential Integral Equations, 5 (1992), 1115-1120.   Google Scholar

[14]

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc, Roy. Soc. Edinburgh Sect. A, 114 (1990), 33-38.  doi: 10.1017/S0308210500024240.  Google Scholar

[15]

P. H. Rabinowitz and K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206 (1991), 473-499.  doi: 10.1007/BF02571356.  Google Scholar

[16]

X. H. Tang, Non-Nehari manifold method for asymptotically linear Schr¨odinger equation, J. Aust. Math. Soc., 98 (2015), 104-116.  doi: 10.1017/S144678871400041X.  Google Scholar

[17]

X. H. Tang and S. T. Chen, Ground state solutions of Nehari-Pohozaev type for SchrödingerPoisson problems with general potentials, Disc. Contin. Dyn. Syst.-Series A., 37 (2017), 4973-5002.  doi: 10.3934/dcds.2017214.  Google Scholar

[18]

X. H. Tang and X. Y. Lin, Existence and multiplicity of homoclinic solutions for second-order discrete Hamiltonian systems with subquadratic potential, J. Differ. Equ. Appl., 17 (2011), 1617-1634.  doi: 10.1080/10236191003730514.  Google Scholar

[19]

X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Diff. Equat.. doi: 10.1007/s10884-018-9662-2.  Google Scholar

[20]

H. F. Xiao and J. S. Yu, Heteroclinic orbits for a discrete pendulum equation, J. Difference Equ. Appl., 17 (2011), 1267-1280.  doi: 10.1080/10236190903167991.  Google Scholar

[21]

J. S. Yu and Z. M. Guo, Homoclinic orbits for nonlinear difference equations containing both advance and retardation, J. Math. Anal. Appl., 352 (2009), 799-806.  doi: 10.1016/j.jmaa.2008.11.043.  Google Scholar

[22]

Q. Zhang, Homoclinic orbits for a class of discrete periodic Hamiltonian systems, Proc. Amer. Math. Soc., 143 (2015), 3155-3163.  doi: 10.1090/S0002-9939-2015-12107-7.  Google Scholar

[23]

Q. Zhang, Homoclinic orbits for discrete Hamiltonian systems with indefinite linear part and super linear terms, Commun. Pure Appl. Anal., 14 (2015), 1929-1940.  doi: 10.3934/cpaa.2015.14.1929.  Google Scholar

[24]

Z. Zhou and J. S. Yu, On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems, J. Differential Equations, 249 (2010), 1199-1212.  doi: 10.1016/j.jde.2010.03.010.  Google Scholar

[25]

Z. ZhouJ. S. Yu and Y. Chen, Homoclinic solutions in periodic difference equations with saturable nonlinearity, Science China, Mathematics, 54 (2011), 83-93.  doi: 10.1007/s11425-010-4101-9.  Google Scholar

[1]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[2]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303

[5]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[6]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[7]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[8]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[9]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[10]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[11]

Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269

[12]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[17]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[18]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (169)
  • HTML views (155)
  • Cited by (14)

Other articles
by authors

[Back to Top]