a.s. div. | a.s. div. (*) | a.s. conv. | a.s. conv. | conv. | ||
a.s. div. | a.s. conv. (*) | a.s. conv. | a.s. conv. | conv. | ||
a.s. div. | a.s. conv. | a.s. conv. | conv. | conv. |
For any positive decreasing to zero sequence $a_n$ such that $\sum a_n$ diverges we consider the related series $\sum k_na_n$ and $\sum j_na_n.$ Here, $k_n$ and $j_n$ are real sequences such that $k_n∈\{0,1\}$ and $j_n∈\{-1,1\}.$ We study their convergence and characterize it in terms of the density of 1's in the sequences $k_n$ and $j_n.$ We extend our results to series $\sum m_na_n,$ with $m_n∈\{-1,0,1\}$ and apply them to study some associated random series.
Citation: |
Table 1.
Behavior of the random series
a.s. div. | a.s. div. (*) | a.s. conv. | a.s. conv. | conv. | ||
a.s. div. | a.s. conv. (*) | a.s. conv. | a.s. conv. | conv. | ||
a.s. div. | a.s. conv. | a.s. conv. | conv. | conv. |
[1] |
P. T. Bateman and H. G. Diamond, Analytic Number Theory. An Introductory Course, Monographs in Number Theory, 1. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004.
![]() ![]() |
[2] |
C. R. Banerjee and B. K. Lahiri, On subseries of divergent series, Amer. Math. Monthly, 71 (1964), 767-768.
doi: 10.2307/2310893.![]() ![]() ![]() |
[3] |
P. Billingsley, Probability and Measure, 2nd ed. John Wiley & Sons, New York, 1986.
![]() ![]() |
[4] |
V. Brun, La série 1/5+1/7+1/11+1/13+1/17+1/19+1/29+1/31+1/41+1/43+1/59+1/61+..., où les dénominateurs sont nombres premiers jumeaux est convergente
ou finie, Bull. des Sci. Mathématiques, 43 (1919), 100-104,124-128.
![]() |
[5] |
G. H. Hardy, Orders of Infinity, Cambridge Univ. Press, 1910.
![]() ![]() |
[6] |
G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949.
![]() ![]() |
[7] |
J. Havil, Gamma. Exploring Euler's Constant, Princeton, NJ: Princeton University Press 2003.
![]() ![]() |
[8] |
K. Itô,
Introduction to Probability Theory, Cambridge University Press,
1984.
![]() ![]() |
[9] |
J. C. Lagarias, Euler's constant: Euler's work
and modern developments, Bul. of the AMS, 50 (2013), 527-628.
doi: 10.1090/S0273-0979-2013-01423-X.![]() ![]() ![]() |
[10] |
B. Lubeck and V. Ponomarenko, Subsums of the Harmonic Series, Amer. Math. Monthly, 125 (2018), 351-355.
doi: 10.1080/00029890.2018.1420996.![]() ![]() ![]() |
[11] |
F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math., 78 (1874), 46-62.
doi: 10.1515/crll.1874.78.46.![]() ![]() ![]() |
[12] |
K. E. Morrison, Cosine products, Fourier transforms, and random
sums, Amer. Math. Monthly, 102 (1995), 716-724.
doi: 10.2307/2974641.![]() ![]() ![]() |
[13] |
L. Moser, On the series, $ \sum 1/p$, Amer. Math. Monthly, 65 (1958), 104-105.
doi: 10.2307/2308884.![]() ![]() ![]() |
[14] |
C. P. Niculescu and G. T. Prǎjiturǎ, Some open
problems concerning the convergence of positive series, Ann. Acad.
Rom. Sci. Ser. Math. Appl., 6 (2014), 92-107.
![]() ![]() |
[15] |
P. Pollack, Euler and the partial sums of the prime harmonic
series, Elem. Math., 70 (2015), 13-20.
doi: 10.4171/EM/268.![]() ![]() ![]() |
[16] |
B. J. Powell, Primitive densities of certain sets of primes, J. Number Theory, 12 (1980), 210-217.
doi: 10.1016/0022-314X(80)90055-4.![]() ![]() ![]() |
[17] |
B. J. Powell and T. Salát, Convergence of subseries of the harmonic series and asymptotic densities of sets of positive integers, Publ. Inst. Math. (Beograd) (N. S.), 50 (1991), 60–70.
![]() ![]() |
[18] |
T. Šalát, On subseries, Math. Z., 85 (1964), 209-225.
![]() ![]() |
[19] |
T. Šalát, On subseries of divergent series, Mat. Casopis Sloven. Akad. Vied, 18 (1968), 312-338.
![]() ![]() |
[20] |
J. A. Scott, On infinite series over the primes, The Mathematical Gazette, 95 (2011), 517-518.
doi: 10.1017/S0025557200003661.![]() ![]() |
[21] |
J. P. Tull and D. Rearick, Mathematical notes: A convergence criterion for positive series, Amer. Math. Monthly, 71 (1964), 294-295.
doi: 10.2307/2312191.![]() ![]() ![]() |