In this paper, we are concerned with fractional Choquard equation
$ \ \ \ \epsilon^{2α}(-Δ)^α u+V(x)u\\ = \epsilon^{μ-3}\Bigl(\int_{\mathbb{R}^3}\frac{|u(y)|^{2_{μ,α}^*}+F(u(y))}{|x-y|^μ}dy\Bigr)\Bigl(|u|^{2_{μ,α}^*-2}u+\frac{1}{2_{μ,α}^*}f(u)\Bigr)\ {\rm in}\ \mathbb{R}^3,$
where $\epsilon>0$ is a parameter, $0<α<1$ , $0<μ<3$ , $2_{μ,α}^* = \frac{6-μ}{3-2α}$ is the critical exponent in the sense of Hardy-Littlewood-Sobolev inequality and fractional Laplace operator, $f$ is a continuous subcritical term, and $F$ is the primitive function of $f$ . By virtue of the method of Nehari manifold and Ljusternik-Schnirelmann category theory, we prove that the equation has a ground state for $\epsilon$ small enough and investigate the relation between the number of solutions and the topology of the set where $V$ attains its global minimum for small $\epsilon$ . We also obtain sufficient conditions for the nonexistence of ground states.
Citation: |
[1] |
C. O. Alves and G. M. Figueiredo, On multiplicity and concentration of
positive solutions for a class of quasilinear problems with critical
exponential growth in $ \mathbb{R}^{N}$, J. Differential Equations, 246 (2009), 1288-1331.
doi: 10.1016/j.jde.2008.08.004.![]() ![]() ![]() |
[2] |
C. O. Alves, F. S. Gao, M. Squassina and M. B. Yang, Singularly perturbed critical Choquard equations, J. Differential Equations, 263 (2017), 3943-3988.
doi: 10.1016/j.jde.2017.05.009.![]() ![]() ![]() |
[3] |
C. O. Alves and M. B. Yang, Multiplicity and concentration of solutions for a quasilinear Choquard equation, J. Math. Phys., 55 (2014), 061502, 21pp.
doi: 10.1063/1.4884301.![]() ![]() ![]() |
[4] |
C. O. Alves and M. B. Yang, Existence of semiclassical ground state solutions for a generalized Choquard equation, J. Differential Equations, 257 (2014), 4133-4164.
doi: 10.1016/j.jde.2014.08.004.![]() ![]() ![]() |
[5] |
C. O. Alves and M. B. Yang, Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 23-58.
doi: 10.1017/S0308210515000311.![]() ![]() ![]() |
[6] |
Y. H. Chen and C. G. Liu, Ground state solutions for non-autonomous fractional Choquard equations, Nonlinearity, 29 (2016), 1827-1842.
doi: 10.1088/0951-7715/29/6/1827.![]() ![]() ![]() |
[7] |
S. Cingolani, M. Clapp and S. Secchi, Multiple solutions to a magnetic nonlinear Choquard equation, Z. Angew. Math. Phys., 63 (2012), 233-248.
doi: 10.1007/s00033-011-0166-8.![]() ![]() ![]() |
[8] |
S. Cingolani and M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions, J. Differential Equations, 160 (2000), 118-138.
doi: 10.1006/jdeq.1999.3662.![]() ![]() ![]() |
[9] |
S. Cingolani, S. Secchi and M. Squassina, Semi-classical limit for Schrödinger equations with magnetic field and Hartree-type nonlinearities, Proc. Roy. Soc. Edinburgh Sect. A, 140 (2010), 973-1009.
doi: 10.1017/S0308210509000584.![]() ![]() ![]() |
[10] |
A. Cotsiolis and N. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225-236.
doi: 10.1016/j.jmaa.2004.03.034.![]() ![]() ![]() |
[11] |
P. d'Avenia, G. Siciliano and M. Squassina, On fractional Choquard equations, Math. Models Methods Appl. Sci., 25 (2015), 1447-1476.
doi: 10.1142/S0218202515500384.![]() ![]() ![]() |
[12] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. des Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[13] |
R. L. Frank and E. Lenzmann, On ground states for the L2-critical boson star equation, arXiv: 0910.2721v2.
![]() |
[14] |
F. S. Gao and M. B. Yang, On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation, Sci. China Math., DOI: 10.1007/s11425-016-9067-5.
![]() |
[15] |
X. M. He and W. M. Zou, Existence and concentration behavior of
positive solutions for a Kirchhoff equation in $ \mathbb{R}^{3}$, J.Differential Equations, 252 (2012), 1813-1834.
doi: 10.1016/j.jde.2011.08.035.![]() ![]() ![]() |
[16] |
N. Laskin, Fractional quantum mechanics and L'evy path integrals, Phys. Lett. A, 268 (2000), 298-305.
doi: 10.1016/S0375-9601(00)00201-2.![]() ![]() ![]() |
[17] |
E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 57 (1976/77), 93-105.
![]() ![]() |
[18] |
E. H. Lieb and M. Loss, Analysis, Gradute Studies in Mathematics, AMS, Providence, Rhode island, 2001.
![]() |
[19] |
P. L. Lions, The Choquard equation and related equations, Nonlinear Anal., 4 (1980), 1063-1073.
doi: 10.1016/0362-546X(80)90016-4.![]() ![]() ![]() |
[20] |
L. Ma and L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455-467.
doi: 10.1007/s00205-008-0208-3.![]() ![]() ![]() |
[21] |
V. Moroz and J. Van Schaftingen, Ground states of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153-184.
doi: 10.1016/j.jfa.2013.04.007.![]() ![]() ![]() |
[22] |
V. Moroz and J. Van Schaftingen, Semi-classical states for the Choquard equation, Calc. Var. Partial Differential Equations, 52 (2015), 199-235.
doi: 10.1007/s00526-014-0709-x.![]() ![]() ![]() |
[23] |
V. Moroz and J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Amer. Maths. Soc., 367 (2015), 6557-6579.
doi: 10.1090/S0002-9947-2014-06289-2.![]() ![]() ![]() |
[24] |
V. Moroz and J. Van Schaftingen, Groundstates of nonlinear Choquard equations: HardyLittlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 1550005, 12 pp.
doi: 10.1142/S0219199715500054.![]() ![]() ![]() |
[25] |
G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calculus Var. Partial Differ. Equ., 50 (2014), 799-829.
doi: 10.1007/s00526-013-0656-y.![]() ![]() ![]() |
[26] |
R. Penrose, On gravity's role in quantum state reduction, Gen. Relativity Gravitation, 28 (1996), 581-600.
doi: 10.1007/BF02105068.![]() ![]() ![]() |
[27] |
P. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.
doi: 10.1007/BF00946631.![]() ![]() ![]() |
[28] |
S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $ \mathbb{R}^3$, J. Math. Phys., 54 (2013), 031501.
doi: 10.1063/1.4793990.![]() ![]() ![]() |
[29] |
R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.
doi: 10.1090/S0002-9947-2014-05884-4.![]() ![]() ![]() |
[30] |
Z. F. Shen, F. S. Gao and M. B. Yang, Ground states for nonlinear fractional Choquard equations with general nonlinearities, Math. Methods Appl. Sci., 39 (2016), 4082-4098.
doi: 10.1002/mma.3849.![]() ![]() ![]() |
[31] |
A. Szulkin and T. Weth, The method of Nehari manifold, in Handbook of Nonconvex Analysis and Applications, Int. Press, Somerville, MA, 2010.
![]() ![]() |
[32] |
J. Wang and J. P. Shi, Standing waves of a weakly coupled Schrödinger system with distinct potential functions, J. Differential Equations, 260 (2016), 1830-1864.
doi: 10.1016/j.jde.2015.09.052.![]() ![]() ![]() |
[33] |
J. Wang, L. X. Tian, J. X. Xu and F. B. Zhang, Multiplicity and
concentration of positive solutions for a Kirchhoff type problem
with critical growth, J. Differential Equations, 253 (2012), 2314-2351.
doi: 10.1016/j.jde.2012.05.023.![]() ![]() ![]() |
[34] |
H. Weitzner and G. M. Zaslavsky, Some applications of fractional equations, Chaotic transport and complexity in classical and quantum dynamics, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 273-281.
doi: 10.1016/S1007-5704(03)00049-2.![]() ![]() ![]() |
[35] |
H. Zhang, J. X. Xu and F. B. Zhang, Existence and multiplicity of solutions for a generalized Choquard equation, Comput. Math. Appl., 73 (2017), 1803-1814.
doi: 10.1016/j.camwa.2017.02.026.![]() ![]() ![]() |