
- Previous Article
- CPAA Home
- This Issue
-
Next Article
Semiclassical states for fractional Choquard equations with critical growth
Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities
Department of Mathematics, Izmir Institute of Technology, Urla, Izmir 35430, Turkey |
The finite time blow-up of solutions for 1-D NLS with oscillating nonlinearities is shown in two domains: (1) the whole real line where the nonlinear source is acting in the interior of the domain and (2) the right half-line where the nonlinear source is placed at the boundary point. The distinctive feature of this work is that the initial energy is allowed to be non-negative and the momentum is allowed to be infinite in contrast to the previous literature on the blow-up of solutions with time dependent nonlinearities. The common finite momentum assumption is removed by using a compactly supported or rapidly decaying weight function in virial identities - an idea borrowed from [
References:
[1] |
F. K. Abdullaev and M. Salerno, Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices, Phys. Rev. A, 72 (2005), 033617. Google Scholar |
[2] |
A. S. Ackleh and K. Deng,
On the critical exponent for the Schrödinger equation with a nonlinear boundary condition, Differential Integral Equations, 17 (2004), 1293-1307.
|
[3] |
G. L. Alfimov, V. V. Konotop and P. Pacciani, Stationary localized modes of the quintic nonlinear Schrodinger equation with a periodic potential, Phys. Rev. A, 75 (2007), 023624. Google Scholar |
[4] |
R. Balakrishan, Soliton propagation in nonuniform media, Phys. Rev. A, 32 (1985), 1144-1149. Google Scholar |
[5] |
A. Batal and T. Özsarı, Nonlinear Schrödinger equation on the half-line with nonlinear boundary condition, Electron. J. Differential Equations, Paper No. 222 (2016), 20 pp. |
[6] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[7] |
I. Damergi and O. Goubet,
Blow-up solutions to the nonlinear Schrödinger equation with oscillating nonlinearities, J. Math. Anal. Appl., 352 (2009), 336-344.
doi: 10.1016/j.jmaa.2008.07.079. |
[8] |
R. T. Glassey,
On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.
doi: 10.1063/1.523491. |
[9] |
A. V. Gurevich, Nonlinear Phonomena in the Ionosphere, Berlin: Springer, 1978. Google Scholar |
[10] |
J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity Ⅰ: Basic theory, preprint, arXiv: 1510.03491. Google Scholar |
[11] |
V. K. Kalantarov and T. Özsarı,
Qualitative properties of solutions for nonlinear Schrödinger
equations with nonlinear boundary conditions on the half-line, J. Math. Phys., 18 (2016), 021511.
doi: 10.1063/1.4941459. |
[12] |
T. Kato,
On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129.
|
[13] |
E. B. Kolomeisky, T. J. Newman and J. P. Straley, Low-dimensional Bose liquids: Beyond the Gross-Pitaevskii approximation, Phys. Rev. Lett., 85 (2000), 1146. Google Scholar |
[14] |
E. H. Lieb, R. Seiringer and J. Yngvason, One-dimensional bosons in three-dimensional traps, Phys. Rev. Lett., 91 (2003), 150401. Google Scholar |
[15] |
B. A. Malomed, Nonlinear Schrödinger equations, in Scott Alwyn, Encyclopedia of Nonlinear Science, New York: Routledge, (2005), 639–643. |
[16] |
M. I. Molina and C. A. Bustamante, The attractive nonlinear delta-function potential, preprint, arXiv: physics/0102053. Google Scholar |
[17] |
T. Ogawa and Y. Tsutsumi,
Blow-up of $ H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.
doi: 10.1016/0022-0396(91)90052-B. |
[18] |
T. Ogawa and Y. Tsutsumi,
Blow-up of $ H^1$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496.
doi: 10.2307/2048340. |
[19] |
B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch and I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice, Nature, 249 (2004), 277-281. Google Scholar |
[20] |
L. Pitaevskii and S. Stringari,
Bose-Einstein Condensation, International Series of Monographs on Physics, 116. The Clarendon Press, Oxford University Press, Oxford, 2003. |
[21] |
C. Sulem and P. L. Sulem,
The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Series in Mathematical Sciences, Volume 139, Springer-Verlag, 1999. |
[22] |
P. Yeh, Optical Waves in Layered Media, New York: Wiley, 1988. Google Scholar |
[23] |
V. E. Zakharov and A. B. Shabat,
Exact theory of two dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69.
|
[24] |
J. Zhang and S. Zhu,
Blow-up profile to solutions of NLS with oscillating nonlinearities, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 219-234.
doi: 10.1007/s00030-011-0125-2. |
show all references
References:
[1] |
F. K. Abdullaev and M. Salerno, Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices, Phys. Rev. A, 72 (2005), 033617. Google Scholar |
[2] |
A. S. Ackleh and K. Deng,
On the critical exponent for the Schrödinger equation with a nonlinear boundary condition, Differential Integral Equations, 17 (2004), 1293-1307.
|
[3] |
G. L. Alfimov, V. V. Konotop and P. Pacciani, Stationary localized modes of the quintic nonlinear Schrodinger equation with a periodic potential, Phys. Rev. A, 75 (2007), 023624. Google Scholar |
[4] |
R. Balakrishan, Soliton propagation in nonuniform media, Phys. Rev. A, 32 (1985), 1144-1149. Google Scholar |
[5] |
A. Batal and T. Özsarı, Nonlinear Schrödinger equation on the half-line with nonlinear boundary condition, Electron. J. Differential Equations, Paper No. 222 (2016), 20 pp. |
[6] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[7] |
I. Damergi and O. Goubet,
Blow-up solutions to the nonlinear Schrödinger equation with oscillating nonlinearities, J. Math. Anal. Appl., 352 (2009), 336-344.
doi: 10.1016/j.jmaa.2008.07.079. |
[8] |
R. T. Glassey,
On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.
doi: 10.1063/1.523491. |
[9] |
A. V. Gurevich, Nonlinear Phonomena in the Ionosphere, Berlin: Springer, 1978. Google Scholar |
[10] |
J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity Ⅰ: Basic theory, preprint, arXiv: 1510.03491. Google Scholar |
[11] |
V. K. Kalantarov and T. Özsarı,
Qualitative properties of solutions for nonlinear Schrödinger
equations with nonlinear boundary conditions on the half-line, J. Math. Phys., 18 (2016), 021511.
doi: 10.1063/1.4941459. |
[12] |
T. Kato,
On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor., 46 (1987), 113-129.
|
[13] |
E. B. Kolomeisky, T. J. Newman and J. P. Straley, Low-dimensional Bose liquids: Beyond the Gross-Pitaevskii approximation, Phys. Rev. Lett., 85 (2000), 1146. Google Scholar |
[14] |
E. H. Lieb, R. Seiringer and J. Yngvason, One-dimensional bosons in three-dimensional traps, Phys. Rev. Lett., 91 (2003), 150401. Google Scholar |
[15] |
B. A. Malomed, Nonlinear Schrödinger equations, in Scott Alwyn, Encyclopedia of Nonlinear Science, New York: Routledge, (2005), 639–643. |
[16] |
M. I. Molina and C. A. Bustamante, The attractive nonlinear delta-function potential, preprint, arXiv: physics/0102053. Google Scholar |
[17] |
T. Ogawa and Y. Tsutsumi,
Blow-up of $ H^1$ solution for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.
doi: 10.1016/0022-0396(91)90052-B. |
[18] |
T. Ogawa and Y. Tsutsumi,
Blow-up of $ H^1$ solutions for the one-dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496.
doi: 10.2307/2048340. |
[19] |
B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch and I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice, Nature, 249 (2004), 277-281. Google Scholar |
[20] |
L. Pitaevskii and S. Stringari,
Bose-Einstein Condensation, International Series of Monographs on Physics, 116. The Clarendon Press, Oxford University Press, Oxford, 2003. |
[21] |
C. Sulem and P. L. Sulem,
The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Series in Mathematical Sciences, Volume 139, Springer-Verlag, 1999. |
[22] |
P. Yeh, Optical Waves in Layered Media, New York: Wiley, 1988. Google Scholar |
[23] |
V. E. Zakharov and A. B. Shabat,
Exact theory of two dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP, 34 (1972), 62-69.
|
[24] |
J. Zhang and S. Zhu,
Blow-up profile to solutions of NLS with oscillating nonlinearities, NoDEA Nonlinear Differential Equations Appl., 19 (2012), 219-234.
doi: 10.1007/s00030-011-0125-2. |




[1] |
Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 |
[2] |
Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023 |
[3] |
Dapeng Du, Yifei Wu, Kaijun Zhang. On blow-up criterion for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3639-3650. doi: 10.3934/dcds.2016.36.3639 |
[4] |
Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671 |
[5] |
Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11 |
[6] |
Zaihui Gan, Jian Zhang. Blow-up, global existence and standing waves for the magnetic nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 827-846. doi: 10.3934/dcds.2012.32.827 |
[7] |
Laurent Di Menza, Olivier Goubet. Stabilizing blow up solutions to nonlinear schrÖdinger equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 1059-1082. doi: 10.3934/cpaa.2017051 |
[8] |
Zhijun Zhang. Boundary blow-up for elliptic problems involving exponential nonlinearities with nonlinear gradient terms and singular weights. Communications on Pure & Applied Analysis, 2007, 6 (2) : 521-529. doi: 10.3934/cpaa.2007.6.521 |
[9] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[10] |
Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 |
[11] |
Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 |
[12] |
Jianbo Cui, Jialin Hong, Liying Sun. On global existence and blow-up for damped stochastic nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6837-6854. doi: 10.3934/dcdsb.2019169 |
[13] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[14] |
Satyanad Kichenassamy. Control of blow-up singularities for nonlinear wave equations. Evolution Equations & Control Theory, 2013, 2 (4) : 669-677. doi: 10.3934/eect.2013.2.669 |
[15] |
Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771 |
[16] |
Filippo Gazzola, Paschalis Karageorgis. Refined blow-up results for nonlinear fourth order differential equations. Communications on Pure & Applied Analysis, 2015, 14 (2) : 677-693. doi: 10.3934/cpaa.2015.14.677 |
[17] |
Guan Huang. An averaging theorem for nonlinear Schrödinger equations with small nonlinearities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3555-3574. doi: 10.3934/dcds.2014.34.3555 |
[18] |
Françoise Demengel, O. Goubet. Existence of boundary blow up solutions for singular or degenerate fully nonlinear equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 621-645. doi: 10.3934/cpaa.2013.12.621 |
[19] |
Marek Fila, Hirokazu Ninomiya, Juan-Luis Vázquez. Dirichlet boundary conditions can prevent blow-up in reaction-diffusion equations and systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 63-74. doi: 10.3934/dcds.2006.14.63 |
[20] |
Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013 |
2018 Impact Factor: 0.925
Tools
Metrics
Other articles
by authors
[Back to Top]