The initial value problem for some coupled non-linear wave equations is investigated. In the defocusing case, global well-posedness and ill-posedness results are obtained. In the focusing sign, the existence of global and non global solutions are discussed via the potential-well theory. Finally, strong instability of standing waves are established.
Citation: |
R. A. Adams, Sobolev Spaces, Academic, New York, 1975.
![]() ![]() |
|
J. M. Arnaudiès and H. Fraysse,
Cours de Mathématiques, Dunod, 1996.
![]() ![]() |
|
A. Atallah Baraket
, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2004)
, 1-21.
![]() ![]() |
|
M. Christ, J. Colliander and T. Tao, Ill- posedness for nonlinear Schrödinger and wave equations,
Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005.
![]() |
|
J. Ferreira
and G. Perla Menzala
, Decay of solutions of a system of nonlinear Klein Gordon equations, Internat. J. Math. Math. Sci., 9 (1986)
, 417-483.
doi: 10.1155/S0161171286000601.![]() ![]() ![]() |
|
J. Ginibre
and G. Velo
, The Global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z., 189 (1985)
, 487-505.
doi: 10.1007/BF01168155.![]() ![]() ![]() |
|
M. Grillakis
, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Annal. of Math., 132 (1990)
, 485-509.
doi: 10.2307/1971427.![]() ![]() ![]() |
|
S. Ibrahim
, N. Masmoudi
and K. Nakanishi
, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis and PDE, 4 (2011)
, 405-460.
doi: 10.2140/apde.2011.4.405.![]() ![]() ![]() |
|
M. Keel
and T. Tao
, Endpoint Strichartz estimates, American Journal of Mathematics, 120 (1998)
, 955-980.
![]() ![]() |
|
E. Kenig
and F. Merle
, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, American Journal of Mathematics, 133 (2011)
, 1029-1065.
doi: 10.1353/ajm.2011.0029.![]() ![]() ![]() |
|
C. Kenig
, G. Ponce
and L. Vega
, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. Appl. Math., 46 (1993)
, 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
|
M. O. Korpusov
, Blow up the solution of a nonlinear system of equations with positive energy, Theoretical and Mathematical Physics, 171 (2012)
, 725-738.
doi: 10.1007/s11232-012-0070-1.![]() ![]() ![]() |
|
G. Lebeau
, Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège., 70 (2001)
, 267-306.
![]() ![]() |
|
G. Lebeau
, Perte de régularité pour l'équation des ondes surcritique, Bull. Soc. Math. France., 133 (2005)
, 145-157.
![]() ![]() |
|
M. M. Miranda
and L. A. Medeiros
, Weak solutions for a system of nonlinear KleinGordon equations, Annali di Matematica pura ed applicata CXLVI, (1987)
, 173-183.
doi: 10.1007/BF01762364.![]() ![]() ![]() |
|
M. M. Miranda
and L. A. Medeiros
, On the existence of global solutions of a coupled nonlinear KleinGordon equations, Funkcialaj Ekvacjoj, 30 (1987)
, 147-161.
![]() ![]() |
|
O. Mahouachi
and T. Saanouni
, Global well posedness and linearization of a semilinear wave equation with exponential growth, Georgian Math. J., 17 (2010)
, 543-562.
![]() ![]() |
|
O. Mahouachi
and T. Saanouni
, Well and ill-posedness issues for a class of 2D wave equation with exponential growth, J. Partial Diff. Eqs., 24 (2011)
, 361-384.
doi: 10.4208/jpde.v24.n4.7.![]() ![]() ![]() |
|
L. A. Medeiros
and G. Perla Menzala
, On a mixed problem for a class of nonlinear Klein Gordon equations, Acta Math. Hung, 52 (1988)
, 61-69.
doi: 10.1007/BF01952481.![]() ![]() ![]() |
|
M. Nakamura
and T. Ozawa
, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999)
, 479-487.
doi: 10.1007/PL00004737.![]() ![]() ![]() |
|
M. Nakamura
and T. Ozawa
, The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, 5 (1999)
, 215-231.
![]() ![]() |
|
E. Y. Ovcharov, Global Regularity of Nonlinear Dispersive Equations and Strichartz Estimates, Ph. D thesis, University of Edinburgh, 2009.
![]() |
|
E. Pişkin
, Uniform decay and blow-up of solutions for coupled nonlinear Klein-Gordon equations with nonlinear damping terms, Math. Meth. Appl. Sci., 37 (2014)
, 3036-3047.
doi: 10.1002/mma.3042.![]() ![]() ![]() |
|
E. Pişkin
, Blow-up of solutions for coupled nonlinear Klein-Gordon equations with weak damping terms, Math. Sci. Letters, 3 (2014)
, 189-191.
![]() |
|
T. Saanouni
, A note on coupled focusing nonlinear Schrödinger equations, Applicable Analysis, 95 (2016)
, 2063-2080.
doi: 10.1080/00036811.2015.1086757.![]() ![]() ![]() |
|
I. Segal
, Nonlinear partial differential equations in Quantum Field Theory, Proc. Symp. Appl. Math. A.M.S., 17 (1965)
, 210-226.
![]() ![]() |
|
M. Struwe
, Semilinear wave equations, Bull. Amer. Math. Soc, N.S., 26 (1992)
, 53-85.
doi: 10.1090/S0273-0979-1992-00225-2.![]() ![]() ![]() |
|
M. Struwe
, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions, Math. Ann., 350 (2011)
, 707-719.
doi: 10.1007/s00208-010-0567-6.![]() ![]() ![]() |
|
J. Shatah
and M. Struwe
, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 7 (1994)
, 303-309.
doi: 10.1155/S1073792894000346.![]() ![]() ![]() |
|
Y. Wang
, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA Journal of Applied Mathematics, 74 (2009)
, 392-415.
doi: 10.1093/imamat/hxp004.![]() ![]() ![]() |
|
S. T. Wu
, Blow-up results for systems of nonlinear Klein-Gordon equation with arbitrary positive initial energy, Electronic Journal of Differential Equations, 92 (2012)
, 1-13.
![]() ![]() |
|
W. Xiao
and Y. Ping
, Global solutions and finite time blow up for some system of nonlinear wave equations, Applied Mathematics and Computation, 219 (2012)
, 3754-3768.
doi: 10.1016/j.amc.2012.10.005.![]() ![]() ![]() |