• Previous Article
    On Positive solutions of integral equations with the weighted Bessel potentials
  • CPAA Home
  • This Issue
  • Next Article
    Well-posedness of axially symmetric incompressible ideal magnetohydrodynamic equations with vacuum under the non-collinearity condition
March  2019, 18(2): 603-623. doi: 10.3934/cpaa.2019030

Well-posedness issues for some critical coupled non-linear Klein-Gordon equations

University Tunis El Manar, Faculty of Sciences of Tunis, 2092, Tunis, Tunisia

Received  November 2017 Revised  July 2018 Published  October 2018

The initial value problem for some coupled non-linear wave equations is investigated. In the defocusing case, global well-posedness and ill-posedness results are obtained. In the focusing sign, the existence of global and non global solutions are discussed via the potential-well theory. Finally, strong instability of standing waves are established.

Citation: Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure and Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030
References:
[1]

R. A. Adams, Sobolev Spaces, Academic, New York, 1975.

[2]

J. M. Arnaudiès and H. Fraysse, Cours de Mathématiques, Dunod, 1996.

[3]

A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2004), 1-21. 

[4]

M. Christ, J. Colliander and T. Tao, Ill- posedness for nonlinear Schrödinger and wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005.

[5]

J. Ferreira and G. Perla Menzala, Decay of solutions of a system of nonlinear Klein Gordon equations, Internat. J. Math. Math. Sci., 9 (1986), 417-483.  doi: 10.1155/S0161171286000601.

[6]

J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z., 189 (1985), 487-505.  doi: 10.1007/BF01168155.

[7]

M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Annal. of Math., 132 (1990), 485-509.  doi: 10.2307/1971427.

[8]

S. IbrahimN. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis and PDE, 4 (2011), 405-460.  doi: 10.2140/apde.2011.4.405.

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates, American Journal of Mathematics, 120 (1998), 955-980. 

[10]

E. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, American Journal of Mathematics, 133 (2011), 1029-1065.  doi: 10.1353/ajm.2011.0029.

[11]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.

[12]

M. O. Korpusov, Blow up the solution of a nonlinear system of equations with positive energy, Theoretical and Mathematical Physics, 171 (2012), 725-738.  doi: 10.1007/s11232-012-0070-1.

[13]

G. Lebeau, Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège., 70 (2001), 267-306. 

[14]

G. Lebeau, Perte de régularité pour l'équation des ondes surcritique, Bull. Soc. Math. France., 133 (2005), 145-157. 

[15]

M. M. Miranda and L. A. Medeiros, Weak solutions for a system of nonlinear KleinGordon equations, Annali di Matematica pura ed applicata CXLVI, (1987), 173-183.  doi: 10.1007/BF01762364.

[16]

M. M. Miranda and L. A. Medeiros, On the existence of global solutions of a coupled nonlinear KleinGordon equations, Funkcialaj Ekvacjoj, 30 (1987), 147-161. 

[17]

O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth, Georgian Math. J., 17 (2010), 543-562. 

[18]

O. Mahouachi and T. Saanouni, Well and ill-posedness issues for a class of 2D wave equation with exponential growth, J. Partial Diff. Eqs., 24 (2011), 361-384.  doi: 10.4208/jpde.v24.n4.7.

[19]

L. A. Medeiros and G. Perla Menzala, On a mixed problem for a class of nonlinear Klein Gordon equations, Acta Math. Hung, 52 (1988), 61-69.  doi: 10.1007/BF01952481.

[20]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487.  doi: 10.1007/PL00004737.

[21]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, 5 (1999), 215-231. 

[22]

E. Y. Ovcharov, Global Regularity of Nonlinear Dispersive Equations and Strichartz Estimates, Ph. D thesis, University of Edinburgh, 2009.

[23]

E. Pişkin, Uniform decay and blow-up of solutions for coupled nonlinear Klein-Gordon equations with nonlinear damping terms, Math. Meth. Appl. Sci., 37 (2014), 3036-3047.  doi: 10.1002/mma.3042.

[24]

E. Pişkin, Blow-up of solutions for coupled nonlinear Klein-Gordon equations with weak damping terms, Math. Sci. Letters, 3 (2014), 189-191. 

[25]

T. Saanouni, A note on coupled focusing nonlinear Schrödinger equations, Applicable Analysis, 95 (2016), 2063-2080.  doi: 10.1080/00036811.2015.1086757.

[26]

I. Segal, Nonlinear partial differential equations in Quantum Field Theory, Proc. Symp. Appl. Math. A.M.S., 17 (1965), 210-226. 

[27]

M. Struwe, Semilinear wave equations, Bull. Amer. Math. Soc, N.S., 26 (1992), 53-85.  doi: 10.1090/S0273-0979-1992-00225-2.

[28]

M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions, Math. Ann., 350 (2011), 707-719.  doi: 10.1007/s00208-010-0567-6.

[29]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 7 (1994), 303-309.  doi: 10.1155/S1073792894000346.

[30]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA Journal of Applied Mathematics, 74 (2009), 392-415.  doi: 10.1093/imamat/hxp004.

[31]

S. T. Wu, Blow-up results for systems of nonlinear Klein-Gordon equation with arbitrary positive initial energy, Electronic Journal of Differential Equations, 92 (2012), 1-13. 

[32]

W. Xiao and Y. Ping, Global solutions and finite time blow up for some system of nonlinear wave equations, Applied Mathematics and Computation, 219 (2012), 3754-3768.  doi: 10.1016/j.amc.2012.10.005.

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic, New York, 1975.

[2]

J. M. Arnaudiès and H. Fraysse, Cours de Mathématiques, Dunod, 1996.

[3]

A. Atallah Baraket, Local existence and estimations for a semilinear wave equation in two dimension space, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 8 (2004), 1-21. 

[4]

M. Christ, J. Colliander and T. Tao, Ill- posedness for nonlinear Schrödinger and wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2005.

[5]

J. Ferreira and G. Perla Menzala, Decay of solutions of a system of nonlinear Klein Gordon equations, Internat. J. Math. Math. Sci., 9 (1986), 417-483.  doi: 10.1155/S0161171286000601.

[6]

J. Ginibre and G. Velo, The Global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z., 189 (1985), 487-505.  doi: 10.1007/BF01168155.

[7]

M. Grillakis, Regularity and asymptotic behavior of the wave equation with a critical nonlinearity, Annal. of Math., 132 (1990), 485-509.  doi: 10.2307/1971427.

[8]

S. IbrahimN. Masmoudi and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation, Analysis and PDE, 4 (2011), 405-460.  doi: 10.2140/apde.2011.4.405.

[9]

M. Keel and T. Tao, Endpoint Strichartz estimates, American Journal of Mathematics, 120 (1998), 955-980. 

[10]

E. Kenig and F. Merle, Nondispersive radial solutions to energy supercritical non-linear wave equations, with applications, American Journal of Mathematics, 133 (2011), 1029-1065.  doi: 10.1353/ajm.2011.0029.

[11]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure. Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.

[12]

M. O. Korpusov, Blow up the solution of a nonlinear system of equations with positive energy, Theoretical and Mathematical Physics, 171 (2012), 725-738.  doi: 10.1007/s11232-012-0070-1.

[13]

G. Lebeau, Nonlinear optics and supercritical wave equation, Bull. Soc. R. Sci. Liège., 70 (2001), 267-306. 

[14]

G. Lebeau, Perte de régularité pour l'équation des ondes surcritique, Bull. Soc. Math. France., 133 (2005), 145-157. 

[15]

M. M. Miranda and L. A. Medeiros, Weak solutions for a system of nonlinear KleinGordon equations, Annali di Matematica pura ed applicata CXLVI, (1987), 173-183.  doi: 10.1007/BF01762364.

[16]

M. M. Miranda and L. A. Medeiros, On the existence of global solutions of a coupled nonlinear KleinGordon equations, Funkcialaj Ekvacjoj, 30 (1987), 147-161. 

[17]

O. Mahouachi and T. Saanouni, Global well posedness and linearization of a semilinear wave equation with exponential growth, Georgian Math. J., 17 (2010), 543-562. 

[18]

O. Mahouachi and T. Saanouni, Well and ill-posedness issues for a class of 2D wave equation with exponential growth, J. Partial Diff. Eqs., 24 (2011), 361-384.  doi: 10.4208/jpde.v24.n4.7.

[19]

L. A. Medeiros and G. Perla Menzala, On a mixed problem for a class of nonlinear Klein Gordon equations, Acta Math. Hung, 52 (1988), 61-69.  doi: 10.1007/BF01952481.

[20]

M. Nakamura and T. Ozawa, Global solutions in the critical Sobolev space for the wave equations with nonlinearity of exponential growth, Math. Z., 231 (1999), 479-487.  doi: 10.1007/PL00004737.

[21]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear wave equations in the Sobolev space of critical order, Discrete and Continuous Dynamical Systems, 5 (1999), 215-231. 

[22]

E. Y. Ovcharov, Global Regularity of Nonlinear Dispersive Equations and Strichartz Estimates, Ph. D thesis, University of Edinburgh, 2009.

[23]

E. Pişkin, Uniform decay and blow-up of solutions for coupled nonlinear Klein-Gordon equations with nonlinear damping terms, Math. Meth. Appl. Sci., 37 (2014), 3036-3047.  doi: 10.1002/mma.3042.

[24]

E. Pişkin, Blow-up of solutions for coupled nonlinear Klein-Gordon equations with weak damping terms, Math. Sci. Letters, 3 (2014), 189-191. 

[25]

T. Saanouni, A note on coupled focusing nonlinear Schrödinger equations, Applicable Analysis, 95 (2016), 2063-2080.  doi: 10.1080/00036811.2015.1086757.

[26]

I. Segal, Nonlinear partial differential equations in Quantum Field Theory, Proc. Symp. Appl. Math. A.M.S., 17 (1965), 210-226. 

[27]

M. Struwe, Semilinear wave equations, Bull. Amer. Math. Soc, N.S., 26 (1992), 53-85.  doi: 10.1090/S0273-0979-1992-00225-2.

[28]

M. Struwe, Global well-posedness of the Cauchy problem for a super-critical nonlinear wave equation in two space dimensions, Math. Ann., 350 (2011), 707-719.  doi: 10.1007/s00208-010-0567-6.

[29]

J. Shatah and M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Internat. Math. Res. Notices, 7 (1994), 303-309.  doi: 10.1155/S1073792894000346.

[30]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA Journal of Applied Mathematics, 74 (2009), 392-415.  doi: 10.1093/imamat/hxp004.

[31]

S. T. Wu, Blow-up results for systems of nonlinear Klein-Gordon equation with arbitrary positive initial energy, Electronic Journal of Differential Equations, 92 (2012), 1-13. 

[32]

W. Xiao and Y. Ping, Global solutions and finite time blow up for some system of nonlinear wave equations, Applied Mathematics and Computation, 219 (2012), 3754-3768.  doi: 10.1016/j.amc.2012.10.005.

[1]

Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370

[2]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure and Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[3]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[4]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations and Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[5]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[6]

Yongsheng Mi, Boling Guo, Chunlai Mu. Well-posedness and blow-up scenario for a new integrable four-component system with peakon solutions. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2171-2191. doi: 10.3934/dcds.2016.36.2171

[7]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[8]

E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156

[9]

Shouming Zhou, Chunlai Mu, Liangchen Wang. Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 843-867. doi: 10.3934/dcds.2014.34.843

[10]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[11]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete and Continuous Dynamical Systems, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[12]

Hartmut Pecher. Local well-posedness for the Klein-Gordon-Zakharov system in 3D. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1707-1736. doi: 10.3934/dcds.2020338

[13]

Hartmut Pecher. Almost optimal local well-posedness for the Maxwell-Klein-Gordon system with data in Fourier-Lebesgue spaces. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3303-3321. doi: 10.3934/cpaa.2020146

[14]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[15]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[16]

Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081

[17]

Hartmut Pecher. Improved well-posedness results for the Maxwell-Klein-Gordon system in 2D. Communications on Pure and Applied Analysis, 2021, 20 (9) : 2965-2989. doi: 10.3934/cpaa.2021091

[18]

Xinwei Yu, Zhichun Zhai. On the Lagrangian averaged Euler equations: local well-posedness and blow-up criterion. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1809-1823. doi: 10.3934/cpaa.2012.11.1809

[19]

Wenjing Zhao. Local well-posedness and blow-up criteria of magneto-viscoelastic flows. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4637-4655. doi: 10.3934/dcds.2018203

[20]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (247)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]