March  2019, 18(2): 625-641. doi: 10.3934/cpaa.2019031

On Positive solutions of integral equations with the weighted Bessel potentials

1. 

College of mathematical econometric, Hunan university, Hunan, Changsha, 410082, China

2. 

College of Sciences, Hunan Agriculture University, Hunan, Changsha, 410128, China

3. 

School of Mathematical Sciences, Xiamen University, Fujian, Xiamen 361005, China

* Corresponding author

Received  December 2017 Revised  June 2018 Published  October 2018

Fund Project: The first author is supported by the Scientific Research Fund of Hunan Provincial Education Department grant 16C0763 and 17C0754; The second author is supported by the NSF of China grant 11671086 and 11871208 and NSF of Hunan Province of China (No. 2018JJ2159); The third author is supported by the NSF of China grant 11771358.

This paper is devoted to exploring the properties of positive solutions for a class of nonlinear integral equation(s) involving the Bessel potentials, which are equivalent to certain partial differential equations under appropriate integrability conditions. With the help of regularity lifting theorem, we obtain an integrability interval of positive solutions and then extend the integrability interval to the whole [1, ∞) by the properties of the Bessel kernels and some delicate analysis techniques. Meanwhile, the radial symmetry and the sharp exponential decay of positive solutions are also obtained. Furthermore, as an application, we establish the uniqueness theorem of the corresponding partial differential equations.

Citation: Mingchun Wang, Jiankai Xu, Huoxiong Wu. On Positive solutions of integral equations with the weighted Bessel potentials. Communications on Pure & Applied Analysis, 2019, 18 (2) : 625-641. doi: 10.3934/cpaa.2019031
References:
[1]

W. Chen and C. Li, Methods on Nonlinear Elliptic equations, AIMS Ser. Differ. Equ. Dyn. Syst., Vol. 4, 2010.  Google Scholar

[2]

W. ChenC. Li and B. Ou, Classification of solutions for a system of integral equation, Comm. Partial Differential Equations, 30 (2005), 59-65.  doi: 10.1081/PDE-200044445.  Google Scholar

[3]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 54 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[4]

C. Coffman, Uniqueness of the ground state solution for $ \triangle u-u+u^3 = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95.  doi: 10.1007/BF00250684.  Google Scholar

[5]

D. J. Frantzeskakis, Frantzeskakis, Dark solitons in atomic Bose-Einstein condesates: from theory to experiments, J. Physic A, 43 (2010), 213001.  doi: 10.1088/1751-8113/43/21/213001.  Google Scholar

[6]

Y. GuoB. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents, J. Differential Equations, 10 (2014), 3463-3495.  doi: 10.1016/j.jde.2014.02.007.  Google Scholar

[7]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $ \mathbb{R}^n$, Comm. Partial Differential Equations, 33 (2008), 263-284.  doi: 10.1080/03605300701257476.  Google Scholar

[8]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential, Comm. Pure Appl. Anal., 10 (2011), 1111-1119.  doi: 10.3934/cpaa.2011.10.1111.  Google Scholar

[9]

C. Jin and C. Li, Qualitative analysis of some systems of equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[10]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[11]

M. Kwong, Uniqueness of positive solutions of $ \triangle u -u+ u^p = 0 \ {\rm in} \ \mathbb{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[12]

Y. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013), 1774-1799.  doi: 10.1016/j.jde.2012.11.008.  Google Scholar

[13]

Y. Lei, Radial symmetry and asymptotic estimates for positive solutions to a singular integral equation, Taiwanese J. Math., 20 (2016), 473-489.  doi: 10.11650/tjm.20.2016.6150.  Google Scholar

[14]

Y. Lei, Positive solutions of integral system involving Bessel potential, Comm. Pure Appl. Anal., 12 (2011), 2721-2737.  doi: 10.3934/cpaa.2013.12.2721.  Google Scholar

[15]

Y. LeiC. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 45 (2012), 43-61.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[16]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Comm. Pure Appl. Anal., 6 (2007), 453-464.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[17]

C. Li and L. Ma, Uniqueness of positive bound states to schrödinger systems with critical expoents, SIAM J. Math. Anal., 40 (2008), 1049-1057.  doi: 10.1137/080712301.  Google Scholar

[18]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 114 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[19]

E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, Vol.14, Amer. Math. Soc., Providence, R.I., 2001. doi: 10.1090/gsm/014.  Google Scholar

[20]

T. Lin and J. Wei, Spikes in two coupled nonlinear schrodinger equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (2005), 403-439.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[21]

G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations, 42 (2011), 563-577.  doi: 10.1007/s00526-011-0398-7.  Google Scholar

[22]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342 (2008), 943-949.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[23]

C. MaW. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 3 (2011), 2676-2699.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[24]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $ \triangle u + f(u) = 0 \ {\rm in} \ \mathbb{R}^n$, Arch. Rational Mech. Anal., 99 (1987), 115-145.  doi: 10.1007/BF00275874.  Google Scholar

[25]

J. XuS. Jiang and H. Wu, Some properties of positive solutions for an integral system with the double weighted Riesz potentials, Comm. Pure Appl. Anal., 15 (2016), 2117-2134.  doi: 10.3934/cpaa.2016030.  Google Scholar

[26]

J. XuH. Wu and Z. Tan, The non-existence results for a class of integral equation, J. Differential Equations, 256 (2014), 1873-1902.  doi: 10.1016/j.jde.2013.12.009.  Google Scholar

[27]

J. XuH. Wu and Z. Tan, Radial symmetry and asymptotic behaviors of positive solutions for certain nonlinear integral equations, J. Math. Anal. Appl., 427 (2015), 307-319.  doi: 10.1016/j.jmaa.2015.02.043.  Google Scholar

[28]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, Nonlinear Anal., 75 (2012), 1989-1999.  doi: 10.1016/j.na.2011.09.051.  Google Scholar

[29]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Math. Vol. 120, Springverlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

show all references

References:
[1]

W. Chen and C. Li, Methods on Nonlinear Elliptic equations, AIMS Ser. Differ. Equ. Dyn. Syst., Vol. 4, 2010.  Google Scholar

[2]

W. ChenC. Li and B. Ou, Classification of solutions for a system of integral equation, Comm. Partial Differential Equations, 30 (2005), 59-65.  doi: 10.1081/PDE-200044445.  Google Scholar

[3]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 54 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[4]

C. Coffman, Uniqueness of the ground state solution for $ \triangle u-u+u^3 = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46 (1972), 81-95.  doi: 10.1007/BF00250684.  Google Scholar

[5]

D. J. Frantzeskakis, Frantzeskakis, Dark solitons in atomic Bose-Einstein condesates: from theory to experiments, J. Physic A, 43 (2010), 213001.  doi: 10.1088/1751-8113/43/21/213001.  Google Scholar

[6]

Y. GuoB. Li and J. Wei, Entire nonradial solutions for non-cooperative coupled elliptic system with critical exponents, J. Differential Equations, 10 (2014), 3463-3495.  doi: 10.1016/j.jde.2014.02.007.  Google Scholar

[7]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $ \mathbb{R}^n$, Comm. Partial Differential Equations, 33 (2008), 263-284.  doi: 10.1080/03605300701257476.  Google Scholar

[8]

X. Han and G. Lu, Regularity of solutions to an integral equation associated with Bessel potential, Comm. Pure Appl. Anal., 10 (2011), 1111-1119.  doi: 10.3934/cpaa.2011.10.1111.  Google Scholar

[9]

C. Jin and C. Li, Qualitative analysis of some systems of equations, Calc. Var. Partial Differential Equations, 26 (2006), 447-457.  doi: 10.1007/s00526-006-0013-5.  Google Scholar

[10]

C. Jin and C. Li, Symmetry of solutions to some systems of integral equations, Proc. Amer. Math. Soc., 134 (2006), 1661-1670.  doi: 10.1090/S0002-9939-05-08411-X.  Google Scholar

[11]

M. Kwong, Uniqueness of positive solutions of $ \triangle u -u+ u^p = 0 \ {\rm in} \ \mathbb{R}^n$, Arch. Rational Mech. Anal., 105 (1989), 243-266.  doi: 10.1007/BF00251502.  Google Scholar

[12]

Y. Lei, Asymptotic properties of positive solutions of the Hardy-Sobolev type equations, J. Differential Equations, 254 (2013), 1774-1799.  doi: 10.1016/j.jde.2012.11.008.  Google Scholar

[13]

Y. Lei, Radial symmetry and asymptotic estimates for positive solutions to a singular integral equation, Taiwanese J. Math., 20 (2016), 473-489.  doi: 10.11650/tjm.20.2016.6150.  Google Scholar

[14]

Y. Lei, Positive solutions of integral system involving Bessel potential, Comm. Pure Appl. Anal., 12 (2011), 2721-2737.  doi: 10.3934/cpaa.2013.12.2721.  Google Scholar

[15]

Y. LeiC. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system of integral equations, Calc. Var. Partial Differential Equations, 45 (2012), 43-61.  doi: 10.1007/s00526-011-0450-7.  Google Scholar

[16]

C. Li and J. Lim, The singularity analysis of solutions to some integral equations, Comm. Pure Appl. Anal., 6 (2007), 453-464.  doi: 10.3934/cpaa.2007.6.453.  Google Scholar

[17]

C. Li and L. Ma, Uniqueness of positive bound states to schrödinger systems with critical expoents, SIAM J. Math. Anal., 40 (2008), 1049-1057.  doi: 10.1137/080712301.  Google Scholar

[18]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. Math., 114 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[19]

E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, Vol.14, Amer. Math. Soc., Providence, R.I., 2001. doi: 10.1090/gsm/014.  Google Scholar

[20]

T. Lin and J. Wei, Spikes in two coupled nonlinear schrodinger equations, Ann. Inst. H. Poincare Anal. Non Lineaire, 22 (2005), 403-439.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[21]

G. Lu and J. Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations, 42 (2011), 563-577.  doi: 10.1007/s00526-011-0398-7.  Google Scholar

[22]

L. Ma and D. Chen, Radial symmetry and monotonicity for an integral equation, J. Math. Anal. Appl., 342 (2008), 943-949.  doi: 10.1016/j.jmaa.2007.12.064.  Google Scholar

[23]

C. MaW. Chen and C. Li, Regularity of solutions for an integral system of Wolff type, Adv. Math., 3 (2011), 2676-2699.  doi: 10.1016/j.aim.2010.07.020.  Google Scholar

[24]

K. Mcleod and J. Serrin, Uniqueness of positive radial solutions of $ \triangle u + f(u) = 0 \ {\rm in} \ \mathbb{R}^n$, Arch. Rational Mech. Anal., 99 (1987), 115-145.  doi: 10.1007/BF00275874.  Google Scholar

[25]

J. XuS. Jiang and H. Wu, Some properties of positive solutions for an integral system with the double weighted Riesz potentials, Comm. Pure Appl. Anal., 15 (2016), 2117-2134.  doi: 10.3934/cpaa.2016030.  Google Scholar

[26]

J. XuH. Wu and Z. Tan, The non-existence results for a class of integral equation, J. Differential Equations, 256 (2014), 1873-1902.  doi: 10.1016/j.jde.2013.12.009.  Google Scholar

[27]

J. XuH. Wu and Z. Tan, Radial symmetry and asymptotic behaviors of positive solutions for certain nonlinear integral equations, J. Math. Anal. Appl., 427 (2015), 307-319.  doi: 10.1016/j.jmaa.2015.02.043.  Google Scholar

[28]

Y. Zhao and Y. Lei, Asymptotic behavior of positive solutions of a nonlinear integral system, Nonlinear Anal., 75 (2012), 1989-1999.  doi: 10.1016/j.na.2011.09.051.  Google Scholar

[29]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Math. Vol. 120, Springverlag, New York, 1989. doi: 10.1007/978-1-4612-1015-3.  Google Scholar

[1]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[2]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[3]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[4]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[6]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[7]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[8]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[9]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[12]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[15]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[16]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[17]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[18]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (94)
  • HTML views (197)
  • Cited by (0)

Other articles
by authors

[Back to Top]