March  2019, 18(2): 689-708. doi: 10.3934/cpaa.2019034

On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation

Institut de Mathématiques de Toulouse UMR5219, Université Toulouse CNRS, 31062 Toulouse Cedex 9, France

Received  January 2018 Revised  May 2018 Published  October 2018

In this paper we study dynamical properties of blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. We establish a profile decomposition and a compactness lemma related to the equation. As a result, we obtain the $L^2$-concentration and the limiting profile with minimal mass of blow-up solutions.

Citation: Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034
References:
[1]

J. BellazziniV. Georgiev and N. Visciglia, Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension, Math. Ann., 371 (2018), 707-740.  doi: 10.1007/s00208-018-1666-z.  Google Scholar

[2]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.  Google Scholar

[3]

D. CaiJ. MajdaD. W. McLaughlin and E. G. Tabak, Dispersive wave turbulence in one dimension, Phys. D: Nonlinear Phenomena, 152-153 (2001), 551-572.  doi: 10.1016/S0167-2789(01)00193-2.  Google Scholar

[4]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.   Google Scholar

[5]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.  Google Scholar

[6]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[7]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödigner equation with Hartree type nonlinearity, Funkcial. Ekvac., 56 (2013), 193-224.  doi: 10.1619/fesi.56.193.  Google Scholar

[8]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282.  doi: 10.3934/cpaa.2014.13.1267.  Google Scholar

[9]

Y. ChoG. Hwang and Y. Shim, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016), 310-329.  doi: 10.1016/j.jmaa.2015.12.060.  Google Scholar

[10]

M. Christ and I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[11]

V. D. Dinh, Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525.  doi: 10.12732/ijam.v31i4.1.  Google Scholar

[12]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.  doi: 10.1515/form.2011.009.  Google Scholar

[13]

B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.  doi: 10.3934/cpaa.2018085.  Google Scholar

[14]

R. L. Frank and E. Lenzmann, Uniqueness of nonlinear gound states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[15]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1725.  doi: 10.1002/cpa.21591.  Google Scholar

[16]

J. FröhlichG. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.  doi: 10.1007/s00220-007-0272-9.  Google Scholar

[17]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[18]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, preprint, arXiv: 1310.8616. Google Scholar

[19]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[20]

Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549. Google Scholar

[21]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[22]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equation revisited, Int. Math. Res. Not., 46 (2005), 2815-2828.  doi: 10.1155/IMRN.2005.2815.  Google Scholar

[23]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140364. doi: 10.1098/rspa.2014.0364.  Google Scholar

[24]

J. KriegerE. Lenzmann and P. Raphaël, Non dispersive solutions for the $L^2$ critical Half-Wave equation, Arch. Rational Mech. Anal., 209 (2013), 61-129.  doi: 10.1007/s00205-013-0620-1.  Google Scholar

[25]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equation in one dimension, J. Funct. Anal., 266 (2014), 139-176.  doi: 10.1016/j.jfa.2013.08.027.  Google Scholar

[26]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the gereralized Korteveg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[27]

Y. Ke, Remark on the Strichartz estimates in the radial case, J. Math. Anal. Appl., 387 (2012), 857-861.  doi: 10.1016/j.jmaa.2011.09.039.  Google Scholar

[28]

K. KirkpatrickE. Lenzmann and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013), 563-591.  doi: 10.1007/s00220-012-1621-x.  Google Scholar

[29]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[30]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214.  doi: 10.1016/0022-0396(90)90075-Z.  Google Scholar

[31]

F. Merle, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass, Comm. Pure Appl. Math., 45 (1992), 203-254.  doi: 10.1002/cpa.3160450204.  Google Scholar

[32]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., 69 (1993), 427-454.  doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[33]

F. Merle and P. Raphaël, On universality of blow-up profile for $L^2$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[34]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[35]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^2$-critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[36]

F. Merle and P. Raphaël, Blow up of critical norm for some radial $L^2$ super critical nonlinear Schrödinger equations, Amer. J. Math., 130 (2008), 945-978.  doi: 10.1353/ajm.0.0012.  Google Scholar

[37]

H. Nava, Asymptotic and limiting profiles of blowup solutions of the nonlinear Schrödinger equation with critical power, Comm. Pure Appl. Math., 52 (1999), 193-207.  doi: 10.1002/(SICI)1097-0312(199902)52:2<193::AID-CPA2>3.0.CO;2-3.  Google Scholar

[38]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[39]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496.  doi: 10.1090/S0002-9939-1991-1045145-5.  Google Scholar

[40]

T. Ozawa and N. Visciglia, An improvement on the Brezis-Gallouët technique for 2D NLS and 1D half-wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1069-1079.  doi: 10.1016/j.anihpc.2015.03.004.  Google Scholar

[41]

C. Peng and Q. Shi, Stability of standing waves for the fractional nonlinear Schrödinger equation, J. Math. Phys., 59 (2018), 011508. doi: 10.1063/1.5021689.  Google Scholar

[42]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.  Google Scholar

[43]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106, AMS, 2006.  Google Scholar

[44]

Y. Tsutsumi, Rate of $L^2$-concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724.  doi: 10.1016/0362-546X(90)90088-X.  Google Scholar

[45]

W. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), 545-565.  doi: 10.1080/03605308608820435.  Google Scholar

[46]

S. Zhu, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differential Equations, 261 (2016), 1506-1531.  doi: 10.1016/j.jde.2016.04.007.  Google Scholar

show all references

References:
[1]

J. BellazziniV. Georgiev and N. Visciglia, Long time dynamics for semi-relativistic NLS and half wave in arbitrary dimension, Math. Ann., 371 (2018), 707-740.  doi: 10.1007/s00208-018-1666-z.  Google Scholar

[2]

T. BoulengerD. Himmelsbach and E. Lenzmann, Blowup for fractional NLS, J. Funct. Anal., 271 (2016), 2569-2603.  doi: 10.1016/j.jfa.2016.08.011.  Google Scholar

[3]

D. CaiJ. MajdaD. W. McLaughlin and E. G. Tabak, Dispersive wave turbulence in one dimension, Phys. D: Nonlinear Phenomena, 152-153 (2001), 551-572.  doi: 10.1016/S0167-2789(01)00193-2.  Google Scholar

[4]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates, Indiana Univ. Math. J., 62 (2013), 991-1020.   Google Scholar

[5]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation, SIAM J. Math. Anal., 38 (2006), 1060-1074.  doi: 10.1137/060653688.  Google Scholar

[6]

Y. ChoT. Ozawa and S. Xia, Remarks on some dispersive estimates, Commun. Pure Appl. Anal., 10 (2011), 1121-1128.  doi: 10.3934/cpaa.2011.10.1121.  Google Scholar

[7]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödigner equation with Hartree type nonlinearity, Funkcial. Ekvac., 56 (2013), 193-224.  doi: 10.1619/fesi.56.193.  Google Scholar

[8]

Y. ChoH. HajaiejG. Hwang and T. Ozawa, On the orbital stability of fractional Schrödinger equations, Commun. Pure Appl. Anal., 13 (2014), 1267-1282.  doi: 10.3934/cpaa.2014.13.1267.  Google Scholar

[9]

Y. ChoG. Hwang and Y. Shim, Energy concentration of the focusing energy-critical fNLS, J. Math. Anal. Appl., 437 (2016), 310-329.  doi: 10.1016/j.jmaa.2015.12.060.  Google Scholar

[10]

M. Christ and I. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100 (1991), 87-109.  doi: 10.1016/0022-1236(91)90103-C.  Google Scholar

[11]

V. D. Dinh, Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces, Int. J. Appl. Math., 31 (2018), 483-525.  doi: 10.12732/ijam.v31i4.1.  Google Scholar

[12]

D. Fang and C. Wang, Weighted Strichartz estimates with angular regularity and their applications, Forum Math., 23 (2011), 181-205.  doi: 10.1515/form.2011.009.  Google Scholar

[13]

B. Feng, On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1785-1804.  doi: 10.3934/cpaa.2018085.  Google Scholar

[14]

R. L. Frank and E. Lenzmann, Uniqueness of nonlinear gound states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[15]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1725.  doi: 10.1002/cpa.21591.  Google Scholar

[16]

J. FröhlichG. Jonsson and E. Lenzmann, Boson stars as solitary waves, Comm. Math. Phys., 274 (2007), 1-30.  doi: 10.1007/s00220-007-0272-9.  Google Scholar

[17]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[18]

Z. Guo, Y. Sire, Y. Wang and L. Zhao, On the energy-critical fractional Schrödinger equation in the radial case, preprint, arXiv: 1310.8616. Google Scholar

[19]

Z. Guo and Y. Wang, Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations, J. Anal. Math., 124 (2014), 1-38.  doi: 10.1007/s11854-014-0025-6.  Google Scholar

[20]

Q. Guo and S. Zhu, Sharp criteria of scattering for the fractional NLS, preprint, arXiv: 1706.02549. Google Scholar

[21]

Y. Hong and Y. Sire, On fractional Schrödinger equations in Sobolev spaces, Commun. Pure Appl. Anal., 14 (2015), 2265-2282.  doi: 10.3934/cpaa.2015.14.2265.  Google Scholar

[22]

T. Hmidi and S. Keraani, Blowup theory for the critical nonlinear Schrödinger equation revisited, Int. Math. Res. Not., 46 (2005), 2815-2828.  doi: 10.1155/IMRN.2005.2815.  Google Scholar

[23]

C. Klein, C. Sparber and P. Markowich, Numerical study of fractional nonlinear Schrödinger equations, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 470 (2014), 20140364. doi: 10.1098/rspa.2014.0364.  Google Scholar

[24]

J. KriegerE. Lenzmann and P. Raphaël, Non dispersive solutions for the $L^2$ critical Half-Wave equation, Arch. Rational Mech. Anal., 209 (2013), 61-129.  doi: 10.1007/s00205-013-0620-1.  Google Scholar

[25]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equation in one dimension, J. Funct. Anal., 266 (2014), 139-176.  doi: 10.1016/j.jfa.2013.08.027.  Google Scholar

[26]

C. E. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the gereralized Korteveg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.  Google Scholar

[27]

Y. Ke, Remark on the Strichartz estimates in the radial case, J. Math. Anal. Appl., 387 (2012), 857-861.  doi: 10.1016/j.jmaa.2011.09.039.  Google Scholar

[28]

K. KirkpatrickE. Lenzmann and G. Staffilani, On the continuum limit for discrete NLS with long-range lattice interactions, Comm. Math. Phys., 317 (2013), 563-591.  doi: 10.1007/s00220-012-1621-x.  Google Scholar

[29]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[30]

F. Merle and Y. Tsutsumi, $L^2$ concentration of blow up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, 84 (1990), 205-214.  doi: 10.1016/0022-0396(90)90075-Z.  Google Scholar

[31]

F. Merle, On uniqueness and continuation properties after blow-up time of self-similar solutions of nonlinear Schrödinger equation with critical exponent and critical mass, Comm. Pure Appl. Math., 45 (1992), 203-254.  doi: 10.1002/cpa.3160450204.  Google Scholar

[32]

F. Merle, Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., 69 (1993), 427-454.  doi: 10.1215/S0012-7094-93-06919-0.  Google Scholar

[33]

F. Merle and P. Raphaël, On universality of blow-up profile for $L^2$-critical nonlinear Schrödinger equation, Invent. Math., 156 (2004), 565-672.  doi: 10.1007/s00222-003-0346-z.  Google Scholar

[34]

F. Merle and P. Raphaël, Blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation, Ann. Math., 161 (2005), 157-222.  doi: 10.4007/annals.2005.161.157.  Google Scholar

[35]

F. Merle and P. Raphaël, On a sharp lower bound on the blow-up rate for the $L^2$-critical nonlinear Schrödinger equation, J. Amer. Math. Soc., 19 (2006), 37-90.  doi: 10.1090/S0894-0347-05-00499-6.  Google Scholar

[36]

F. Merle and P. Raphaël, Blow up of critical norm for some radial $L^2$ super critical nonlinear Schrödinger equations, Amer. J. Math., 130 (2008), 945-978.  doi: 10.1353/ajm.0.0012.  Google Scholar

[38]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the nonlinear Schrödinger equation, J. Differential Equations, 92 (1991), 317-330.  doi: 10.1016/0022-0396(91)90052-B.  Google Scholar

[39]

T. Ogawa and Y. Tsutsumi, Blow-up of $H^1$ solutions for the one dimensional nonlinear Schrödinger equation with critical power nonlinearity, Proc. Amer. Math. Soc., 111 (1991), 487-496.  doi: 10.1090/S0002-9939-1991-1045145-5.  Google Scholar

[40]

T. Ozawa and N. Visciglia, An improvement on the Brezis-Gallouët technique for 2D NLS and 1D half-wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, 33 (2016), 1069-1079.  doi: 10.1016/j.anihpc.2015.03.004.  Google Scholar

[41]

C. Peng and Q. Shi, Stability of standing waves for the fractional nonlinear Schrödinger equation, J. Math. Phys., 59 (2018), 011508. doi: 10.1063/1.5021689.  Google Scholar

[42]

C. SunH. WangX. Yao and J. Zheng, Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., 38 (2018), 2207-2228.  doi: 10.3934/dcds.2018091.  Google Scholar

[43]

T. Tao, Nonlinear Dispersive Equations: Local and Global Analysis, CBMS Regional Conference Series in Mathematics 106, AMS, 2006.  Google Scholar

[44]

Y. Tsutsumi, Rate of $L^2$-concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power, Nonlinear Anal., 15 (1990), 719-724.  doi: 10.1016/0362-546X(90)90088-X.  Google Scholar

[45]

W. I. Weinstein, On the structure and formation of singularities in solutions to nonlinear dispersive evolution equations, Comm. Partial Differential Equations, 11 (1986), 545-565.  doi: 10.1080/03605308608820435.  Google Scholar

[46]

S. Zhu, On the blow-up solutions for the nonlinear fractional Schrödinger equation, J. Differential Equations, 261 (2016), 1506-1531.  doi: 10.1016/j.jde.2016.04.007.  Google Scholar

Table 1.  Local well-posedness (LWP) in $H^s$ for NLFS
$s$$\alpha$LWP
$d=1$$\frac{1}{3}<s<\frac{1}{2}$$0<\alpha<\frac{4s}{1-2s}$$u_0$ non-radial
$d=1$$\frac{1}{2}<s<1$$0<\alpha<\infty$$u_0$ non-radial
$d=2$$\frac{1}{2}<s<1$$0<\alpha<\frac{4s}{2-2s}$$u_0$ non-radial
$d=3$$\frac{3}{5}\leq s\leq \frac{3}{4}$$0<\alpha<\frac{4s}{3-2s}$$u_0$ radial
$d=3$$\frac{3}{4}<s< 1$$0<\alpha<\frac{4s}{3-2s}$$u_0$ non-radial
$d\geq 4$$\frac{d}{2d-1}\leq s<1$$0<\alpha<\frac{4s}{d-2s}$$u_0$ radial
$s$$\alpha$LWP
$d=1$$\frac{1}{3}<s<\frac{1}{2}$$0<\alpha<\frac{4s}{1-2s}$$u_0$ non-radial
$d=1$$\frac{1}{2}<s<1$$0<\alpha<\infty$$u_0$ non-radial
$d=2$$\frac{1}{2}<s<1$$0<\alpha<\frac{4s}{2-2s}$$u_0$ non-radial
$d=3$$\frac{3}{5}\leq s\leq \frac{3}{4}$$0<\alpha<\frac{4s}{3-2s}$$u_0$ radial
$d=3$$\frac{3}{4}<s< 1$$0<\alpha<\frac{4s}{3-2s}$$u_0$ non-radial
$d\geq 4$$\frac{d}{2d-1}\leq s<1$$0<\alpha<\frac{4s}{d-2s}$$u_0$ radial
[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[3]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[6]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[7]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

[8]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[9]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[10]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[11]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[12]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[13]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[14]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[15]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (112)
  • HTML views (197)
  • Cited by (6)

Other articles
by authors

[Back to Top]