A mild formulation for stochastic parabolic Anderson model with time-homogeneous Gaussian potential suggests a way of defining a solution to obtain its optimal regularity. Two different interpretations in the equation or in the mild formulation are possible with usual pathwise product and the Wick product: the usual pathwise interpretation is mainly discussed. We emphasize that a modified version of parabolic Schauder estimates is a key idea for the existence and uniqueness of a mild solution. In particular, the mild formulation is crucial to investigate a relation between the equations with usual pathwise product and the Wick product.
Citation: |
R. H. Cameron
and W. T. Martin
, The orthogonal development of nonlinear functionals in a series of Fourier-Hermite functions, Ann. Math., 48 (1947)
, 385-392.
doi: 10.2307/1969178.![]() ![]() ![]() |
|
T. Coulhon
and X. T. Duong
, Maximal regularity and kernel bounds: observations on a theorem by Hieber and Prüs, Adv. Diff. Eq., 5 (2000)
, 343-368.
![]() ![]() |
|
M. Gubinelli, P. Imkeller and N. Perkowski, Paracontrolled distributions and singular PDEs preprint, arXiv: 1210.2684v4.
doi: 10.1017/fmp.2015.2.![]() ![]() ![]() |
|
M. Hairer
, A theory of regularity structures, Invent. Math., 198 (2014)
, 269-504.
doi: 10.1007/s00222-014-0505-4.![]() ![]() ![]() |
|
M. Hairer
and $\acute{E}.$ Pardoux
, A Wong-Zakai theorem for stochastic PDEs, J. Math. Soc. Japan, 67 (2015)
, 1551-1604.
doi: 10.2969/jmsj/06741551.![]() ![]() ![]() |
|
M. Hairer
and C. Labb$\acute{e}$
, A simple construction of the continuum parabolic Anderson model on $ \mathbb{R}^2 $, Electron. Commun. Probab., 20 (2015)
, 1-11.
doi: 10.1214/ECP.v20-4038.![]() ![]() ![]() |
|
M. Hairer and C. Labbé, Multiplicative stochastic heat equations on the whole space preprint, arXiv: 1504.07162v2.
doi: 10.4171/JEMS/781.![]() ![]() ![]() |
|
Y. Hu
, Chaos expansion of heat equations with white noise potentials, Potential Anal., 16 (2002)
, 45-66.
doi: 10.1023/A:1024878703232.![]() ![]() ![]() |
|
Y. Hu, J. Huang, D. Nualart and S. Tindel, Stochastic heat equations with general multiplicative Gaussian noises: Hölder continuity and intermittency, Electron. J. Probab., 20 (2015), 50pp.
doi: 10.1214/EJP.v20-3316.![]() ![]() ![]() |
|
H.-J. Kim
and S. V. Lototsky
, Time-homogeneous parabolic Wick-Anderson model in one space dimension: regularity of solution, Stochastics and Partial Differential Equations: Analysis and Computations, (2017)
, 1-33.
doi: 10.1007/s40072-017-0097-2.![]() ![]() ![]() |
|
H.-J. Kim and S. V. Lototsky, Heat equation with a geometric rough path potential in one space dimension: existence and regularity of solution preprint, arXiv: 1712.08196.
doi: 10.1007/s40072-017-0097-2.![]() ![]() ![]() |
|
N. V. Krylov, An Analytic Approach to SPDEs, AMS, 1999.
doi: 10.1090/surv/064/05.![]() ![]() ![]() |
|
W. Luo,
Wiener Chaos Expansion and Numerical Solutions of Stochastic Partial Differential Equations, Ph.D thesis, California Institute of Technology, 2006.
![]() ![]() |
|
R. Mikulevicius
and B. L. Rozovskii
, On unbiased stochastic Navier-Stokes equations, Probab. Theory Related Fields, 154 (2012)
, 787-834.
doi: 10.1007/s00440-011-0384-1.![]() ![]() ![]() |
|
O. A. Ladyženskaja, V. A. Solonnikov and N. N. Uralceva,
Linear and Quasilinear Equations of Parabolic Type, AMS, Providence, R.I., 23 1968.
![]() ![]() |
|
H. Uemura
, Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior, Stochastic Anal. Appl., 14 (1996)
, 487-506.
doi: 10.1080/07362999608809452.![]() ![]() ![]() |