The paper investigates the existence of global and exponential attractors for the strongly damped Kirchhoff wave equation with supercritical nonlinearity on $\mathbb{R}^N$: $u_{tt}-φ(x)Δ u_{t}-φ(x)M(\|\nabla u\|^{2})Δ u+f(u) = h(x)$. It proves that when the growth exponent $p$ of the nonlinearity $f(u) $ is up to the supercritical range: $ 1≤ p < p^{**}(\equiv \frac{N+4}{(N-4)^+})$, the related solution semigroup has in weighted energy space a (strong) global attractor and a partially strong exponential attractor, respectively. In particular, the partially strong exponential attractor becomes the strong one in non-supercritical case (i.e., $1≤ p≤ p^{*}(\equiv \frac{N+2}{N-2})$).
Citation: |
R. A. Adams and J. J. F. Fournier,
Sobolev Spaces, 2$^{nd}$ edition, Academic Press, New York, 2003.
![]() ![]() |
|
S. S. Antman
, The equation for large vibrations of strings, Amer. Math. Monthly, 87 (1980)
, 359-370.
doi: 10.2307/2321203.![]() ![]() ![]() |
|
A. Arosio
and S. Panizzi
, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc., 348 (1996)
, 305-330.
doi: 10.1090/S0002-9947-96-01532-2.![]() ![]() ![]() |
|
A. V. Babin
and M. I. Vishik
, Attractors of partial differential evolution equations in an unbounded domain, Proceedings of the Royal Society of Edinburgh, 116A (1990)
, 221-243.
doi: 10.1017/S0308210500031498.![]() ![]() ![]() |
|
K. J. Brown
and N. M. Stavrakakis
, Global bifurcation results for a semilinear elliptic equation on all of $\mathbb{R}^N$, Duke Mathematical Journal, 85 (1996)
, 77-94.
doi: 10.1215/S0012-7094-96-08503-8.![]() ![]() ![]() |
|
M. M. Cavalcanti
, V. N. D. Cavalcanti
, J. S. P. Filho
and J. A. Soriano
, Existence and exponential decay for a Kirchhoff-Carrier model with viscosity, J. Math. Anal. Appl., 226 (1998)
, 40-60.
doi: 10.1006/jmaa.1998.6057.![]() ![]() ![]() |
|
I. Chueshov
, Long-time dynamics of Kirchhoff wave models with strong nonlinear damping, J. Differential Equations, 252 (2012)
, 1229-1262.
doi: 10.1016/j.jde.2011.08.022.![]() ![]() ![]() |
|
I. Chueshov,
Dynamics of Quasi-Stable Dissipative Systems, Springer, 2015.
doi: 10.1007/978-3-319-22903-4.![]() ![]() ![]() |
|
G. Duvaut and J. L. Lions,
Inequalities in Mechanics and Physics, Springer-Verlag, Berlin/New York, 1976.
![]() ![]() |
|
X. Fan
and S. Zhou
, Kernel sections for non-autonomous strongly damped wave equations of non-degenerate Kirchhoff-type, Appl. Math. Comput., 158 (2004)
, 253-266.
doi: 10.1016/j.amc.2003.08.147.![]() ![]() ![]() |
|
E. Feireisl
, Attractors for semilinear damped wave equations on $\mathbb{R}^3$, Nonlinear Anal., 23 (1994)
, 187-195.
doi: 10.1016/0362-546X(94)90041-8.![]() ![]() ![]() |
|
N. I. Karachalios
and N. M. Stavrakakis
, Existence of a global attractor for semilinear dissipative wave equations on $\mathbb{R}^N$, J. differential Equations, 157 (1999)
, 183-205.
doi: 10.1006/jdeq.1999.3618.![]() ![]() ![]() |
|
N. I. Karachalios
and N. M. Stavrakakis
, Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb{R}^N$, Discrete Continuous Dynam. Systems - A, 8 (2002)
, 939-951.
doi: 10.3934/dcds.2002.8.939.![]() ![]() ![]() |
|
G. Kirchhoff,
Vorlesungen über Mechanik, Teubner, Stuttgart, 1883.
![]() |
|
M. V. Klibanov
, Global convexity in a three-dimensional inverse acoustic problem, SIAM J. Math. Anal., 28 (1997)
, 1371-1388.
doi: 10.1137/S0036141096297364.![]() ![]() ![]() |
|
G. W. Liu
and S. X. Xia
, Global existence and finite time blow up for a class of semilinear wave equations on $\mathbb{R}^N$, Computers and Mathematics with Applications, 70 (2015)
, 1345-1356.
doi: 10.1016/j.camwa.2015.07.021.![]() ![]() ![]() |
|
T. Matsuyama
and R. Ikehata
, On global solution and energy decay for the wave equation of Kirchhoff type with nonlinear damping term, J. Math. Anal. Appl., 204 (1996)
, 729-753.
doi: 10.1006/jmaa.1996.0464.![]() ![]() ![]() |
|
J. Muñoz Rivera
, E. C. Lapa
and R. Barreto
, Decay rates for viscoelastic plates with memory, Journal of Elasticity, 44 (1996)
, 61-87.
doi: 10.1007/BF00042192.![]() ![]() ![]() |
|
M. Nakao
, An attractor for a nonlinear dissipative wave equation of Kirchhoff type, J. Math. Anal. Appl., 353 (2009)
, 652-659.
doi: 10.1016/j.jmaa.2008.09.010.![]() ![]() ![]() |
|
K. Ono
, Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, J. Differential Equations, 137 (1997)
, 273-301.
doi: 10.1006/jdeq.1997.3263.![]() ![]() ![]() |
|
K. Ono
, On global existence, asymptotic stability and blowing up of solutions for some degenerate non-linear wave equations of Kirchhoff type with a strong dissipation, Math. Methods Appl. Sci., 20 (1997)
, 151-177.
doi: 10.1002/(SICI)1099-1476(19970125)20:2<151::AID-MMA851>3.3.CO;2-S.![]() ![]() ![]() |
|
P. G. Papadopoulos
, M. Karamolengos
and A. Pappas
, Global existence and energy decay for mildly degenerate Kirchhoff's equations on $\mathbb{R}^N$, Journal of Interdisciplinary Mathematics, 12 (2009)
, 767-783.
![]() |
|
P. G. Papadopoulos
, N. L. Matiadou
and S. Fatouros
, Globa existence and blow-up results for an hyperbolic problem on $\mathbb{R}^N$, Applicable Analysis, 93 (2014)
, 475-489.
doi: 10.1080/00036811.2013.778982.![]() ![]() ![]() |
|
P. G. Papadopoulos
and N. M. Stavrakakis
, Strong global attractor for a quasi-linear nonlocal wave equation on $\mathbb{R}^N$, Electronic Journal of Differential Equations, 77 (2006)
, 1-10.
![]() ![]() |
|
P. G. Papadopoulos
and N. M. Stavrakakis
, Compact invariant sets for some quasilinear nonlocal Kirchhoff strings on $\mathbb{R}^N$, Applicable Analysis, 87 (2008)
, 133-148.
doi: 10.1080/00036810601127418.![]() ![]() ![]() |
|
M. Reed and B. Simon,
Methods of Modern Mathematical Physics III: Scattering Theory, Academic Press, New York, 1979.
![]() ![]() |
|
B. X. Wang, Z. H. Huo, C. C. Hao and Z. H. Guo,
Harmonic Analysis Method for Nonlinear Evolution Equations, World Scientific Publishing Co. Pte. Ltd., Singapore, 2011.
![]() ![]() |
|
Z. J. Yang
, Longtime behavior of the Kirchhoff type equation with strong damping on $ \mathbb{R}^{N}$, J. Differential Equations, 242 (2007)
, 269-286.
doi: 10.1016/j.jde.2007.08.004.![]() ![]() ![]() |
|
Z. J. Yang
and P. Y. Ding
, Longtime dynamics of the Kirchhoff equation with strong damping and critical nonlinearity on $\mathbb{R}^N$, J. Math. Anal. Appl., 434 (2016)
, 1826-1851.
doi: 10.1016/j.jmaa.2015.10.013.![]() ![]() ![]() |
|
Z. J. Yang
and X. Li
, Finite-dimensional attractors for the Kirchhoff equation with a strong dissipation, J. Math. Anal. Appl., 375 (2011)
, 579-593.
doi: 10.1016/j.jmaa.2010.09.051.![]() ![]() ![]() |
|
Z. J. Yang
and Y. Q. Wang
, Global attractor for the Kirchhoff type equation with a strong dissipation, J. Differential Equations, 249 (2010)
, 3258-3278.
doi: 10.1016/j.jde.2010.09.024.![]() ![]() ![]() |
|
E. Zauderer,
Partial Differential Equations of Applied Mathematics, John Wiley and Sons, Singapore, 1989.
![]() ![]() |