In this paper we exhibit some sufficient conditions that imply general weighted
${\Delta _k}\left( {a|{\Delta _k}\vartheta {|^{p - 2}}{\Delta _k}\vartheta {\rm{ }}} \right) \ge b{\vartheta ^{p - 1}}$
almost everywhere in
${X_j} = \frac{\partial }{{\partial {x_j}}} + 2k{y_j}|z{{\rm{|}}^{2k - 2}}\frac{\partial }{{\partial l}}, \;\;\;\;{Y_j} = \frac{\partial }{{\partial {y_j}}} - 2k{x_j}|z{|^{2k - 2}}\frac{\partial }{{\partial l}}, \;\;\;\;j = 1, ..., n, $
where
Citation: |
Adimurthi
, M. Grossi
and S. Santra
, Optimal Hardy-Rellich inequalities, maximum principle
and related eigenvalue problem, J. Funct. Anal., 240 (2006)
, 36-83.
doi: 10.1016/j.jfa.2006.07.011.![]() ![]() ![]() |
|
Adimurthi
and S. Santra
, Generalized Hardy-Rellich inequalities in critical dimension and its
applications, Commun. Contemp. Math., 11 (2009)
, 367-394.
doi: 10.1142/S0219199709003405.![]() ![]() ![]() |
|
S. Ahmetolan
and I. Kombe
, A sharp uncertainty principle and Hardy-Poincaré inequalities
on sub-Riemannian manifolds, Math. Inequal. Appl., 15 (2012)
, 457-467.
doi: 10.7153/mia-15-40.![]() ![]() ![]() |
|
S. Ahmetolan
and I. Kombe
, Hardy and Rellich type inequalities with two weight functions, Math. Inequal. Appl., 19 (2016)
, 937-948.
doi: 10.7153/mia-19-68.![]() ![]() ![]() |
|
W. Allegretto
and Y. X. Huang
, A Picone's identity for the p−Laplacian and applications, Nonlinear Anal., 32 (1998)
, 819-830.
doi: 10.1016/S0362-546X(97)00530-0.![]() ![]() ![]() |
|
G. Barbatis
, Improved Rellich inequalities for the polyharmonic operator, Indiana Univ. Math. J., 55 (2006)
, 1401-1422.
doi: 10.1512/iumj.2006.55.2752.![]() ![]() ![]() |
|
R. Beals
, B. Gaveau
and P. Greiner
, On a geometric formula for the fundamental solution of
sub-elliptic Laplacians, Math. Nachr., 181 (1996)
, 81-163.
doi: 10.1002/mana.3211810105.![]() ![]() ![]() |
|
R. Beals
, B. Gaveau
and P. Greiner
, Uniform hypoelliptic Green's functions, J. Math. Pures Appl., 77 (1998)
, 209-248.
doi: 10.1016/S0021-7824(98)80069-X.![]() ![]() ![]() |
|
D. M. Bennett
, An extension of Rellich's inequality, Proc. Amer. Math. Soc., 106 (1989)
, 987-993.
doi: 10.2307/2047283.![]() ![]() ![]() |
|
P. Caldiroli
and R. Musina
, Rellich inequalities with weights, Calc. Var. Partial Differential Equations, 45 (2012)
, 147-164.
doi: 10.1007/s00526-011-0454-3.![]() ![]() ![]() |
|
E. B. Davies
and A. M. Hinz
, Explicit constants for Rellich inequalities in Lp(Ω), Math. Z., 227 (1998)
, 511-523.
doi: 10.1007/PL00004389.![]() ![]() ![]() |
|
A. Detalla
, T. Horiuchi
and H. Ando
, Sharp remainder terms of the Rellich inequality and its
application, Bull. Malays. Math. Sci. Soc., 35 (2012)
, 519-528.
![]() ![]() |
|
G. B. Folland
, A fundamental solution for a sub-elliptic operator, Bull. Amer. Math. Soc., 79 (1973)
, 373-376.
doi: 10.1090/S0002-9904-1973-13171-4.![]() ![]() ![]() |
|
V. A. Galaktionov
and I. V. Kamotski
, On nonexistence of Baras-Goldstein type for higherorder parabolic equations with singular potentials, Trans. Am. Math. Soc., 362 (2010)
, 4117-4136.
doi: 10.1090/S0002-9947-10-04855-5.![]() ![]() ![]() |
|
N. Garofalo
and E. Lanconelli
, Frequency functions on the Heisenberg group, the uncertainty
principle and unique continuation, Ann Inst Fourier (Grenoble), 40 (1990)
, 313-356.
![]() ![]() |
|
F. Gazzola
, H. C. Grunau
and E. Mitidieri
, Hardy inequalities with optimal constants and
remainder terms, Trans. Amer. Math. Soc., 356 (2004)
, 2149-2168.
doi: 10.1090/S0002-9947-03-03395-6.![]() ![]() ![]() |
|
P. C. Greiner
, A fundamental solution for a nonelliptic partial differential operator, Canad. J. Math., 31 (1979)
, 1107-1120.
doi: 10.4153/CJM-1979-101-3.![]() ![]() ![]() |
|
I. Kombe
, On the nonexistence of positive solutions to nonlinear degenerate parabolic equations with singular coefficients, Appl. Anal., 85 (2006)
, 467-478.
doi: 10.1080/00036810500404967.![]() ![]() ![]() |
|
B. Lian
, Some sharp Rellich type inequalities on nilpotent groups and application, Acta Math. Sci. Ser. B Engl. Ed., 33 (2013)
, 59-74.
doi: 10.1016/S0252-9602(12)60194-5.![]() ![]() ![]() |
|
P. Lindqvist
, On the equation $\text{div}(|\nabla u|^{p-2}\nabla u)+\lambda |u|^{p-2}u = 0$, Proc. Amer. Math. Soc., 109 (1990)
, 157-164.
doi: 10.2307/2048375.![]() ![]() ![]() |
|
G. Metafune
, M. Sobajima
and S. C. Motohiro
, Weighted Calderón-Zygmund and Rellich
inequalities in Lp, Math. Ann., 361 (2015)
, 313-366.
doi: 10.1007/s00208-014-1075-x.![]() ![]() ![]() |
|
A. Moradifam
, Optimal weighted Hardy-Rellich inequalities on $H^{2}\cap H_{0}^{1}$, J. Lond. Math. Soc., 85 (2012)
, 22-40.
doi: 10.1112/jlms/jdr045.![]() ![]() ![]() |
|
R. Musina
, Weighted Sobolev spaces of radially symmetric functions, Annali di Matematica, 193 (2014)
, 1629-1659.
doi: 10.1007/s10231-013-0348-4.![]() ![]() ![]() |
|
P. Niu
, Y. Ou
and J. Han
, Several Hardy type inequalities with weights related to generalized
Greiner operator, Canad. Math. Bull., 53 (2010)
, 153-162.
doi: 10.4153/CMB-2010-029-9.![]() ![]() ![]() |
|
P. Niu
, H. Zhang
and Y. Wang
, Hardy type and Rellich type inequalities on the Heisenberg
group, Proc. Amer. Math. Soc., 129 (2001)
, 3623-3630.
doi: 10.1090/S0002-9939-01-06011-7.![]() ![]() ![]() |
|
F. Rellich, Halbbeschränkte Differentialoperatoren höherer Ordnung, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. Ⅲ, Erven P. Noordhoff N.V.,
Groningen; North-Holland Publishing Co., Amsterdam, 1956, pp. 243–250.
![]() ![]() |
|
A. Tertikas
and N. Zographopoulos
, Best constants in the Hardy-Rellich inequalities and
related improvements, Adv. in Math., 209 (2007)
, 407-459.
doi: 10.1016/j.aim.2006.05.011.![]() ![]() ![]() |
|
A. Yener, General weighted Hardy type inequalities related to Greiner operators, to appear in Rocky Mountain J. Math., https://projecteuclid.org/euclid.rmjm/1528164034.
![]() |