We consider an evolution system describing the phenomenon of marble sulphation of a monument, accounting of the surface rugosity. We first prove a local in time well posedness result. Then, stronger assumptions on the data allow us to establish the existence of a global in time solution. Finally, we perform some numerical simulations that illustrate the main feature of the proposed model.
Citation: |
D. Aregba-Driollet
, F. Diele
and R. Natalini
, A mathematical model for the sulphur dioxide aggression to calcium carbonate stones: numerical approximation and asymptotic analysis, SIAM J. Appl. Math., 64 (2004)
, 1636-1667.
doi: 10.1137/S003613990342829X.![]() ![]() ![]() |
|
C. Baiocchi
, Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert, Ann. Mat. Pura Appl., 76 (1967)
, 233-304.
doi: 10.1007/BF02412236.![]() ![]() ![]() |
|
W. Bangerth
, R. Hartmann
and G. Kanschat
, deal.II - A general-purpose object-oriented finite element library, ACM Trans. Math. Softw., 33 (2007)
, 1-27.
doi: 10.1145/1268776.1268779.![]() ![]() ![]() |
|
E. Bonetti
and M. Frémond
, Analytical results on a model for damaging in domains and interfaces, ESAIM Control Optim. Calc. Var., 17 (2011)
, 955-974.
doi: 10.1051/cocv/2010033.![]() ![]() ![]() |
|
F. Clarelli
, A. Fasano
and R. Natalini
, Mathematics and monument conservation: free boundary models of marble sulfation, SIAM J. Appl. Math., 69 (2008)
, 149-168.
doi: 10.1137/070695125.![]() ![]() ![]() |
|
F. Freddi
and G. Royer-Carfagni
, Regularized variational theories of fracture: A unified approach, Journal of the Mechanics and Physics of Solids, 58 (2010)
, 1154-1174.
doi: 10.1016/j.jmps.2010.02.010.![]() ![]() ![]() |
|
M. Frémond, Non-smooth Thermomechanics, Springer-Verlag, Berlin, 2002.
doi: 10.1007/978-3-662-04800-9.![]() ![]() ![]() |
|
C. Giavarini
, M. L. Santarelli
, R. Natalini
and F. Freddi
, A non-linear model of sulphation of porous stones: Numerical simulations and preliminary laboratory assessments, Journal of Cultural Heritage, 9 (2008)
, 14-22.
doi: 10.1016/j.culher.2007.12.001.![]() ![]() |
|
F. R. Guarguaglini
and R. Natalini
, Global existence of solutions to a nonlinear model of sulphation phenomena in calcium carbonate stones, Nonlinear Anal., 6 (2005)
, 477-494.
doi: 10.1016/j.nonrwa.2004.09.007.![]() ![]() ![]() |
|
F. R. Guarguaglini
and R. Natalini
, Nonlinear transmission problems for quasilinear diffusion systems, Netw. Heterog. Media, 2 (2007)
, 359-381.
doi: 10.3934/nhm.2007.2.359.![]() ![]() ![]() |
|
F. R. Guarguaglini
and R. Natalini
, Fast reaction limit and large time behavior of solutions to a nonlinear model for sulphation phenomena, Comm. Partial Differential Equations, 32 (2007)
, 163-189.
doi: 10.1080/03605300500361438.![]() ![]() ![]() |
|
A. Mielke
, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011)
, 1329-1346.
doi: 10.1088/0951-7715/24/4/016.![]() ![]() ![]() |
|
R. Natalini
, C. Nitsch
, G. Pontrelli
and S. Sbaraglia
, A numerical study of a nonlocal model of damage propagation under chemical aggression, European J. Appl. Math., 14 (2003)
, 447-464.
doi: 10.1017/S0956792503005205.![]() ![]() ![]() |
|
C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992.
![]() ![]() |
|
M. Taylor,
Partial Differential Equations I. Basic Theory. Applied Mathematical Sciences,
115, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7055-8.![]() ![]() ![]() |
|
D. Whitehouse,
Surfaces and Their Measurement, Butterworth-Heinemann, Boston, 2012.
![]() |
|
BS EN ISO 4287:2000, Geometrical product specification (GPS). Surface texture. Profile method. Terms, definitions and surface texture parameters.
![]() |
Evolution of
Evolution of
Evolution of
Evolution of
Evolution of
Concentration of
Evolution of
Evolution of
Evolution of