May  2019, 18(3): 999-1021. doi: 10.3934/cpaa.2019049

Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator

1. 

Laboratoire de Mathématiques de l'INSA de Rouen, 685 Avenue de l'Université, 76800 Saint-Étienne-du-Rouvray, France

2. 

On leave from IRMAR, Université de Rennes 1, France

Received  June 2017 Revised  March 2018 Published  November 2018

We study the well-posedness of second order Hamilton-Jacobi equations with an Ornstein-Uhlenbeck operator in $\mathbb{R}^N$ and $\mathbb{R}^N× [0, +∞).$ As applications, we solve the associated ergodic problem associated to the stationary equation and obtain the large time behavior of the solutions of the evolution equation when it is nondegenerate. These results are some generalizations of the ones obtained by Fujita, Ishii & Loreti 2006 [19] by considering more general diffusion matrices or nonlocal operators of integro-differential type and general sublinear Hamiltonians. Our work uses as a key ingredient the a-priori Lipschitz estimates obtained in Chasseigne, Ley & Nguyen 2017 [10].

Citation: Thi Tuyen Nguyen. Large time behavior of solutions of local and nonlocal nondegenerate Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator. Communications on Pure & Applied Analysis, 2019, 18 (3) : 999-1021. doi: 10.3934/cpaa.2019049
References:
[1]

O. Alvarez and Agnès Tourin, Viscosity solutions of nonlinear integro-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1996), 293-317.  doi: 10.1016/S0294-1449(16)30106-8.  Google Scholar

[2]

M. Bardi and Francesca Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel), 4 (1999), 276-285.  doi: 10.1007/s000130050399.  Google Scholar

[3]

G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag Paris, 1994.  Google Scholar

[4]

G. BarlesS. Biton and O. Ley, A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal., 4 (2002), 287-325.  doi: 10.1007/s002050200188.  Google Scholar

[5]

G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 6 (2001), 1311-1323.  doi: 10.1137/S0036141000369344.  Google Scholar

[6]

G. BarlesE. ChasseigneA. Ciomaga and C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations, 11 (2012), 6012-6060.  doi: 10.1016/j.jde.2012.02.013.  Google Scholar

[7]

G. BarlesEmmanuel ChasseigneAdina Ciomaga and Cyril Imbert, Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations, Calc. Var. Partial Differential Equations, 50 (2014), 283-304.  doi: 10.1007/s00526-013-0636-2.  Google Scholar

[8]

G. Barles and Cyril Imbert, Second-order elliptic integro-differential equations: viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (2008), 567-585.  doi: 10.1016/j.anihpc.2007.02.007.  Google Scholar

[9]

G. BarlesOlivier Ley and Erwin Topp, Lipschitz regularity for integro-differential equations with coercive Hamiltonians and applications to large time behavior, Nonlinearity, 30 (2017), 703-734.  doi: 10.1088/1361-6544/aa527f.  Google Scholar

[10]

E. Chasseigne, O. Ley, and T. T. Nguyen, A priori lipschitz estimates for solutions of local and nonlocal hamilton-jacobi equations with ornstein-uhlenbeck operator, Rev. Mat. Iberoam., to appear (2017). Google Scholar

[11]

A. Ciomaga, On the strong maximum principle for second-order nonlinear parabolic integro-differential equations, Adv. Differential Equations, 17 (2012), 635-671.   Google Scholar

[12]

J. Coville, Remarks on the strong maximum principle for nonlocal operators, Electron. J. Differential Equations, 66 (2008), 1-10.   Google Scholar

[13]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 1 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[14]

F. Da Lio, Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations, Commun. Pure Appl. Anal., 3 (2004), 395-415.  doi: 10.3934/cpaa.2004.3.395.  Google Scholar

[15]

F. Da Lio and O. Ley, Uniqueness Results for Second Order Bellman-Isaacs Equations under Quadratic Growth Assumptions and Applications, SIAM J. Control Optim., 45 (2006), 74-106.  doi: 10.1137/S0363012904440897.  Google Scholar

[16]

E. Di NezzaGiampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 5 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[17]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.  Google Scholar

[18]

Y. FujitaH. Ishii and P. Loreti, Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space, Indiana Univ. Math. J., 5 (2006), 1671-1700.  doi: 10.1512/iumj.2006.55.2813.  Google Scholar

[19]

Y. FujitaH. Ishii and P. Loreti, Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator, Comm. Partial Differential Equations, 31 (2006), 827-848.  doi: 10.1080/03605300500358087.  Google Scholar

[20]

Y. Fujita and P. Loreti, Long-time behavior of solutions to Hamilton-Jacobi equations with quadratic gradient term, NoDEA Nonlinear Differential Equations Appl., 6 (2009), 771-791.  doi: 10.1007/s00030-009-0034-9.  Google Scholar

[21]

N. Ichihara and S. Sheu, Large time behavior of solutions of Hamilton-Jacobi-Bellman equations with quadratic nonlinearity in gradient, Siam J. Math. Anal., 45 (2013), 279-306.  doi: 10.1137/110832343.  Google Scholar

[22]

H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 2 (1987), 369-384.  doi: 10.1215/S0012-7094-87-05521-9.  Google Scholar

[23]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, Mathematical Society of Japan, Tokyo, 2004.  Google Scholar

[24]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralseva, Linear and Quasilinear Equations of Parabolic Type, American Math. Soc., Providence, RI, 1968.  Google Scholar

[25]

O. Ley and V. D. Nguyen, Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems, Nonlinear Anal., 130 (2016), 76-101.  doi: 10.1016/j.na.2015.09.012.  Google Scholar

[26]

O. Ley and V. D. Nguyen, Lipschitz regularity results for nonlinear strictly elliptic equations and applications, J. Differential Equations, 263 (2017), 4324-4354.  doi: 10.1016/j.jde.2017.05.020.  Google Scholar

[27]

P.-L. Lions, B. Papanicolaou, and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, Unpublished, 1986. Google Scholar

[28]

Thi Tuyen Nguyen, Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi, du premier et second ordre, locales et non-locales, dans des cas nonp´eriodiques, Ph.D thesis, Université de Rennes 1, France, 2016. Google Scholar

show all references

References:
[1]

O. Alvarez and Agnès Tourin, Viscosity solutions of nonlinear integro-differential equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (1996), 293-317.  doi: 10.1016/S0294-1449(16)30106-8.  Google Scholar

[2]

M. Bardi and Francesca Da Lio, On the strong maximum principle for fully nonlinear degenerate elliptic equations, Arch. Math. (Basel), 4 (1999), 276-285.  doi: 10.1007/s000130050399.  Google Scholar

[3]

G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, Springer-Verlag Paris, 1994.  Google Scholar

[4]

G. BarlesS. Biton and O. Ley, A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal., 4 (2002), 287-325.  doi: 10.1007/s002050200188.  Google Scholar

[5]

G. Barles and P. E. Souganidis, Space-time periodic solutions and long-time behavior of solutions to quasi-linear parabolic equations, SIAM J. Math. Anal., 6 (2001), 1311-1323.  doi: 10.1137/S0036141000369344.  Google Scholar

[6]

G. BarlesE. ChasseigneA. Ciomaga and C. Imbert, Lipschitz regularity of solutions for mixed integro-differential equations, J. Differential Equations, 11 (2012), 6012-6060.  doi: 10.1016/j.jde.2012.02.013.  Google Scholar

[7]

G. BarlesEmmanuel ChasseigneAdina Ciomaga and Cyril Imbert, Large time behavior of periodic viscosity solutions for uniformly parabolic integro-differential equations, Calc. Var. Partial Differential Equations, 50 (2014), 283-304.  doi: 10.1007/s00526-013-0636-2.  Google Scholar

[8]

G. Barles and Cyril Imbert, Second-order elliptic integro-differential equations: viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 3 (2008), 567-585.  doi: 10.1016/j.anihpc.2007.02.007.  Google Scholar

[9]

G. BarlesOlivier Ley and Erwin Topp, Lipschitz regularity for integro-differential equations with coercive Hamiltonians and applications to large time behavior, Nonlinearity, 30 (2017), 703-734.  doi: 10.1088/1361-6544/aa527f.  Google Scholar

[10]

E. Chasseigne, O. Ley, and T. T. Nguyen, A priori lipschitz estimates for solutions of local and nonlocal hamilton-jacobi equations with ornstein-uhlenbeck operator, Rev. Mat. Iberoam., to appear (2017). Google Scholar

[11]

A. Ciomaga, On the strong maximum principle for second-order nonlinear parabolic integro-differential equations, Adv. Differential Equations, 17 (2012), 635-671.   Google Scholar

[12]

J. Coville, Remarks on the strong maximum principle for nonlocal operators, Electron. J. Differential Equations, 66 (2008), 1-10.   Google Scholar

[13]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc. (N.S.), 1 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[14]

F. Da Lio, Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations, Commun. Pure Appl. Anal., 3 (2004), 395-415.  doi: 10.3934/cpaa.2004.3.395.  Google Scholar

[15]

F. Da Lio and O. Ley, Uniqueness Results for Second Order Bellman-Isaacs Equations under Quadratic Growth Assumptions and Applications, SIAM J. Control Optim., 45 (2006), 74-106.  doi: 10.1137/S0363012904440897.  Google Scholar

[16]

E. Di NezzaGiampiero Palatucci and Enrico Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 5 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[17]

W. H. Fleming and H. M. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-Verlag, New York, 1993.  Google Scholar

[18]

Y. FujitaH. Ishii and P. Loreti, Asymptotic solutions of Hamilton-Jacobi equations in Euclidean n space, Indiana Univ. Math. J., 5 (2006), 1671-1700.  doi: 10.1512/iumj.2006.55.2813.  Google Scholar

[19]

Y. FujitaH. Ishii and P. Loreti, Asymptotic solutions of viscous Hamilton-Jacobi equations with Ornstein-Uhlenbeck operator, Comm. Partial Differential Equations, 31 (2006), 827-848.  doi: 10.1080/03605300500358087.  Google Scholar

[20]

Y. Fujita and P. Loreti, Long-time behavior of solutions to Hamilton-Jacobi equations with quadratic gradient term, NoDEA Nonlinear Differential Equations Appl., 6 (2009), 771-791.  doi: 10.1007/s00030-009-0034-9.  Google Scholar

[21]

N. Ichihara and S. Sheu, Large time behavior of solutions of Hamilton-Jacobi-Bellman equations with quadratic nonlinearity in gradient, Siam J. Math. Anal., 45 (2013), 279-306.  doi: 10.1137/110832343.  Google Scholar

[22]

H. Ishii, Perron's method for Hamilton-Jacobi equations, Duke Math. J., 2 (1987), 369-384.  doi: 10.1215/S0012-7094-87-05521-9.  Google Scholar

[23]

S. Koike, A Beginner's Guide to the Theory of Viscosity Solutions, Mathematical Society of Japan, Tokyo, 2004.  Google Scholar

[24]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralseva, Linear and Quasilinear Equations of Parabolic Type, American Math. Soc., Providence, RI, 1968.  Google Scholar

[25]

O. Ley and V. D. Nguyen, Gradient bounds for nonlinear degenerate parabolic equations and application to large time behavior of systems, Nonlinear Anal., 130 (2016), 76-101.  doi: 10.1016/j.na.2015.09.012.  Google Scholar

[26]

O. Ley and V. D. Nguyen, Lipschitz regularity results for nonlinear strictly elliptic equations and applications, J. Differential Equations, 263 (2017), 4324-4354.  doi: 10.1016/j.jde.2017.05.020.  Google Scholar

[27]

P.-L. Lions, B. Papanicolaou, and S. R. S. Varadhan, Homogenization of Hamilton-Jacobi equations, Unpublished, 1986. Google Scholar

[28]

Thi Tuyen Nguyen, Comportement en temps long des solutions de quelques équations de Hamilton-Jacobi, du premier et second ordre, locales et non-locales, dans des cas nonp´eriodiques, Ph.D thesis, Université de Rennes 1, France, 2016. Google Scholar

[1]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[5]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[6]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[7]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[8]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[9]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[10]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[11]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[12]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[13]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[14]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[15]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[16]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (200)
  • HTML views (241)
  • Cited by (0)

Other articles
by authors

[Back to Top]