In the present paper we prove uniqueness results for solutions to a class of Neumann boundary value problems whose prototype is
$\left\{ \begin{align} & -\text{div}({{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u)-\text{div}(c(x)|u{{|}^{p-2}}u)=f\ \ \ \text{in}\ \Omega , \\ & \left( {{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u+c(x)|u{{|}^{p-2}}u \right)\cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}=0\ \ \ \text{on}\ \partial \Omega , \\ \end{align} \right.$
where $Ω$ is a bounded domain of $\mathbb{R}^{N}$, $N≥ 2$, with Lipschitz boundary, $ 1 < p < N$, $\underline n$ is the outer unit normal to $\partial Ω$, the datum $f$ belongs to $L^{(p^{*})'}(Ω)$ or to $L^{1}(Ω)$ and satisfies the compatibility condition $\int{{}}_Ω f \, dx = 0$. Finally the coefficient $c(x)$ belongs to an appropriate Lebesgue space.
Citation: |
A. Alvino
, A. Cianchi
, V. G. Maz'ya
and A. Mercaldo
, Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010)
, 1017-1054.
doi: 10.1016/j.anihpc.2010.01.010.![]() ![]() ![]() |
|
A. Alvino
and A. Mercaldo
, Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods, Mediterr. J. Math., 5 (2008)
, 173-185.
doi: 10.1007/s00009-008-0142-5.![]() ![]() ![]() |
|
F. Andreu
, J. M. Mazón
, S. Segura de León
and J. Toledo
, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7 (1997)
, 183-213.
![]() ![]() |
|
M. Artola
, Sur une classe de problémes paraboliques quasi-linéaires, Boll. Un. Mat. Ital. B (6), 5 (1986)
, 51-70.
![]() ![]() |
|
G. Barles
, G. Diaz
and J. I. Diaz
, Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non-Lipschitz nonlinearity, Comm. Partial Differential
Equations, 17 (1992)
, 1037-1050.
doi: 10.1080/03605309208820876.![]() ![]() ![]() |
|
M. Ben Cheikh Ali
and O. Guibé
, Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl., 16 (2006)
, 275-297.
![]() ![]() |
|
P. Bénilan
, L. Boccardo
, T. Gallouët
, R. Gariepy
, M. Pierre
and J. L. Vázquez
, An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995)
, 241-273.
![]() ![]() |
|
M. F. Betta
, O. Guibé
and A. Mercaldo
, Neumann problems for nonlinear elliptic equations with $L^1$ data, J. Differential Equations, 259 (2015)
, 898-924.
doi: 10.1016/j.jde.2015.02.031.![]() ![]() ![]() |
|
M. F. Betta
, A. Mercaldo
, F. Murat
and M. M. Porzio
, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum, C. R. Math. Acad.
Sci. Paris, 334 (2002)
, 757-762.
doi: 10.1016/S1631-073X(02)02338-5.![]() ![]() ![]() |
|
M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Existence of renormalized solutions to
nonlinear elliptic equations with a lower-order term and right-hand side a measure, J. Math.
Pures Appl. (9), 82 (2003), 90–124. Corrected reprint of J. Math. Pures Appl. (9), 8 (2002),
533–566.
doi: 10.1016/S0021-7824(03)00006-0.![]() ![]() ![]() |
|
L. Boccardo
and T. Gallouët
, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989)
, 149-169.
doi: 10.1016/0022-1236(89)90005-0.![]() ![]() ![]() |
|
L. Boccardo
and T. Gallouët
, Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992)
, 641-655.
doi: 10.1080/03605309208820857.![]() ![]() ![]() |
|
L. Boccardo
, T. Gallouët
and F. Murat
, Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris S´er. I Math., 315 (1992)
, 1159-1164.
![]() ![]() |
|
J. Chabrowski
, On the Neumann problem with $L^1$ data, Colloq. Math., 107 (2007)
, 301-316.
doi: 10.4064/cm107-2-10.![]() ![]() ![]() |
|
M. Chipot
and G. Michaille
, Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (1989)
, 137-166.
![]() ![]() |
|
G. Dal Maso
, F. Murat
, L. Orsina
and A. Prignet
, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999)
, 741-808.
![]() ![]() |
|
A. Dall'Aglio
, Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4), 170 (1996)
, 207-240.
doi: 10.1007/BF01758989.![]() ![]() ![]() |
|
A. Decarreau
, J. Liang
and J.-M. Rakotoson
, Trace imbeddings for $T$-sets and application to Neumann-Dirichlet problems with measures included in the boundary data, Ann. Fac. Sci.
Toulouse Math. (6), 5 (1996)
, 443-470.
![]() ![]() |
|
J. Droniou
, Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method, Adv. Differential Equations, 5 (2000)
, 1341-1396.
![]() ![]() |
|
J. Droniou
and J.-L. Vázquez
, Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009)
, 413-434.
doi: 10.1007/s00526-008-0189-y.![]() ![]() ![]() |
|
V. Ferone
and A. Mercaldo
, A second order derivation formula for functions defined by integrals, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998)
, 549-554.
doi: 10.1016/S0764-4442(98)85005-2.![]() ![]() ![]() |
|
V. Ferone
and A. Mercaldo
, Neumann problems and Steiner symmetrization, Comm. Partial
Differential Equations, 30 (2005)
, 1537-1553.
doi: 10.1080/03605300500299596.![]() ![]() ![]() |
|
O. Guibé
and A. Mercaldo
, Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data, Potential Anal., 25 (2006)
, 223-258.
doi: 10.1007/s11118-006-9011-7.![]() ![]() ![]() |
|
O. Guibé
and A. Mercaldo
, Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data, Trans. Amer. Math. Soc., 360 (2008)
, 643-669.
doi: 10.1090/S0002-9947-07-04139-6.![]() ![]() ![]() |
|
J. Leray
and J.-L. Lions
, Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965)
, 97-107.
![]() ![]() |
|
J.-L. Lions,
Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, 1969.
![]() ![]() |
|
P. L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires, In manuscript.
![]() |
|
F. Murat, Equations elliptiques non linéaires avec second membre ${L}^1$ ou mesure, In Compte Rendus du 26ème Congrès d'Analyse Numérique, les Karellis, 1994.
![]() |
|
A. Prignet
, Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure, Ann. Fac. Sci. Toulouse Math. (6), 6 (1997)
, 297-318.
![]() ![]() |
|
W. P. Ziemer,
Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation.
doi: 10.1007/978-1-4612-1015-3.![]() ![]() ![]() |