In the present paper we prove uniqueness results for solutions to a class of Neumann boundary value problems whose prototype is
$\left\{ \begin{align} & -\text{div}({{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u)-\text{div}(c(x)|u{{|}^{p-2}}u)=f\ \ \ \text{in}\ \Omega , \\ & \left( {{(1+|\nabla u{{|}^{2}})}^{(p-2)/2}}\nabla u+c(x)|u{{|}^{p-2}}u \right)\cdot \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{n}=0\ \ \ \text{on}\ \partial \Omega , \\ \end{align} \right.$
where $Ω$ is a bounded domain of $\mathbb{R}^{N}$, $N≥ 2$, with Lipschitz boundary, $ 1 < p < N$, $\underline n$ is the outer unit normal to $\partial Ω$, the datum $f$ belongs to $L^{(p^{*})'}(Ω)$ or to $L^{1}(Ω)$ and satisfies the compatibility condition $\int{{}}_Ω f \, dx = 0$. Finally the coefficient $c(x)$ belongs to an appropriate Lebesgue space.
Citation: |
A. Alvino , A. Cianchi , V. G. Maz'ya and A. Mercaldo , Well-posed elliptic Neumann problems involving irregular data and domains, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010) , 1017-1054. doi: 10.1016/j.anihpc.2010.01.010. | |
A. Alvino and A. Mercaldo , Nonlinear elliptic problems with $L^1$ data: an approach via symmetrization methods, Mediterr. J. Math., 5 (2008) , 173-185. doi: 10.1007/s00009-008-0142-5. | |
F. Andreu , J. M. Mazón , S. Segura de León and J. Toledo , Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions, Adv. Math. Sci. Appl., 7 (1997) , 183-213. | |
M. Artola , Sur une classe de problémes paraboliques quasi-linéaires, Boll. Un. Mat. Ital. B (6), 5 (1986) , 51-70. | |
G. Barles , G. Diaz and J. I. Diaz , Uniqueness and continuum of foliated solutions for a quasilinear elliptic equation with a non-Lipschitz nonlinearity, Comm. Partial Differential Equations, 17 (1992) , 1037-1050. doi: 10.1080/03605309208820876. | |
M. Ben Cheikh Ali and O. Guibé , Nonlinear and non-coercive elliptic problems with integrable data, Adv. Math. Sci. Appl., 16 (2006) , 275-297. | |
P. Bénilan , L. Boccardo , T. Gallouët , R. Gariepy , M. Pierre and J. L. Vázquez , An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995) , 241-273. | |
M. F. Betta , O. Guibé and A. Mercaldo , Neumann problems for nonlinear elliptic equations with $L^1$ data, J. Differential Equations, 259 (2015) , 898-924. doi: 10.1016/j.jde.2015.02.031. | |
M. F. Betta , A. Mercaldo , F. Murat and M. M. Porzio , Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum, C. R. Math. Acad. Sci. Paris, 334 (2002) , 757-762. doi: 10.1016/S1631-073X(02)02338-5. | |
M. F. Betta, A. Mercaldo, F. Murat and M. M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure, J. Math. Pures Appl. (9), 82 (2003), 90–124. Corrected reprint of J. Math. Pures Appl. (9), 8 (2002), 533–566. doi: 10.1016/S0021-7824(03)00006-0. | |
L. Boccardo and T. Gallouët , Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989) , 149-169. doi: 10.1016/0022-1236(89)90005-0. | |
L. Boccardo and T. Gallouët , Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations, 17 (1992) , 641-655. doi: 10.1080/03605309208820857. | |
L. Boccardo , T. Gallouët and F. Murat , Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris S´er. I Math., 315 (1992) , 1159-1164. | |
J. Chabrowski , On the Neumann problem with $L^1$ data, Colloq. Math., 107 (2007) , 301-316. doi: 10.4064/cm107-2-10. | |
M. Chipot and G. Michaille , Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 16 (1989) , 137-166. | |
G. Dal Maso , F. Murat , L. Orsina and A. Prignet , Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 28 (1999) , 741-808. | |
A. Dall'Aglio , Approximated solutions of equations with $L^1$ data. Application to the $H$-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl. (4), 170 (1996) , 207-240. doi: 10.1007/BF01758989. | |
A. Decarreau , J. Liang and J.-M. Rakotoson , Trace imbeddings for $T$-sets and application to Neumann-Dirichlet problems with measures included in the boundary data, Ann. Fac. Sci. Toulouse Math. (6), 5 (1996) , 443-470. | |
J. Droniou , Solving convection-diffusion equations with mixed, Neumann and Fourier boundary conditions and measures as data, by a duality method, Adv. Differential Equations, 5 (2000) , 1341-1396. | |
J. Droniou and J.-L. Vázquez , Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009) , 413-434. doi: 10.1007/s00526-008-0189-y. | |
V. Ferone and A. Mercaldo , A second order derivation formula for functions defined by integrals, C. R. Acad. Sci. Paris Sér. I Math., 326 (1998) , 549-554. doi: 10.1016/S0764-4442(98)85005-2. | |
V. Ferone and A. Mercaldo , Neumann problems and Steiner symmetrization, Comm. Partial Differential Equations, 30 (2005) , 1537-1553. doi: 10.1080/03605300500299596. | |
O. Guibé and A. Mercaldo , Existence and stability results for renormalized solutions to noncoercive nonlinear elliptic equations with measure data, Potential Anal., 25 (2006) , 223-258. doi: 10.1007/s11118-006-9011-7. | |
O. Guibé and A. Mercaldo , Existence of renormalized solutions to nonlinear elliptic equations with two lower order terms and measure data, Trans. Amer. Math. Soc., 360 (2008) , 643-669. doi: 10.1090/S0002-9947-07-04139-6. | |
J. Leray and J.-L. Lions , Quelques résulatats de Višik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France, 93 (1965) , 97-107. | |
J.-L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, 1969. | |
P. L. Lions and F. Murat, Sur les solutions renormalisées d'équations elliptiques non linéaires, In manuscript. | |
F. Murat, Equations elliptiques non linéaires avec second membre ${L}^1$ ou mesure, In Compte Rendus du 26ème Congrès d'Analyse Numérique, les Karellis, 1994. | |
A. Prignet , Conditions aux limites non homogènes pour des problèmes elliptiques avec second membre mesure, Ann. Fac. Sci. Toulouse Math. (6), 6 (1997) , 297-318. | |
W. P. Ziemer, Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1989. Sobolev spaces and functions of bounded variation. doi: 10.1007/978-1-4612-1015-3. |