-
Previous Article
A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group
- CPAA Home
- This Issue
-
Next Article
Entire solutions in nonlocal monostable equations: Asymmetric case
The properties of positive solutions to semilinear equations involving the fractional Laplacian
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China |
$Ω$ |
$\left\{ \begin{array}{*{35}{l}} \begin{align} & {{(-\Delta )}^{\frac{\alpha }{2}}}u=f(u),\ \ \text{in}\ \ \Omega , \\ & u=0, ~~~~~~~~~~~~~~~~~~~~ \text{in}\ \ {{\Omega }^{c}},\ \\ \end{align} & \ & {} \\\end{array} \right.~~~~(1)$ |
$α$ |
zhongwenzy$ |
$ |
$f$ |
$ \begin{align}u(x) \ = \ \int{{}}_{ Ω}G(x, y)f(u(y))dy, \end{align}~~~~(2) $ |
$G(x, y)$ |
$Ω$ |
References:
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781. |
[2] |
J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121 Cambridge University Press, Cambridge, 1996. |
[3] |
K. Bogdan,
The boundary Harnack principle for the fractional Laplacian, Studia Math., 123 (1997), 43-80.
doi: 10.4064/sm-123-1-43-80. |
[4] |
J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications, Physics reports, 195 (1990).
doi: 10.1016/0370-1573(90)90099-N. |
[5] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. in PDE, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[6] |
L. Caffarelli and L. Vasseur,
Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[7] |
X. Cabré and J. Tan,
Positive solutions of nonlinear problems involving the square root of
the Laplacian, Adv. in Math., 224 (2010), 2052-2093.
doi: 10.1016/j.aim.2010.01.025. |
[8] |
W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains, arXiv: 1309.7499v1. |
[9] |
W. Chen, Y. Fang and R. Yang,
Liouville theorems involving the fractional Laplacian on a
half space, Adv. in Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013. |
[10] |
W. Chen and C. Li,
Regularity of solutions for a system of integral equation, Comm. Pure Appl. Anal., 4 (2005), 1-8.
doi: 10.3934/cpaa.2005.4.1. |
[11] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS. Ser. Differ. Equ. Dyn. Syst. vol.4 2010. |
[12] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[13] |
P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical
Foundation of Turbulent Viscous Flows, Vol. 1871 of Lecture Notes in Math. 1–43, Springer,
Berlin, 2006.
doi: 10.1007/11545989_1. |
[14] |
P. Felmer and Y. Wang, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Comm. Cont. Math., 16 (2014), 1350023.
doi: 10.1142/S0219199713500235. |
[15] |
Q. Guan,
Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.
doi: 10.1007/s00220-006-0054-9. |
[16] |
T. Kulczycki,
Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997), 339-364.
|
[17] |
Yan Li, A semilinear equation involving the fractional Laplacian in $\mathbb{R}^{n}$, J. Math. Anal. Appl., 7 (2015), |
[18] |
E. Nezza, G. Palatucci and E. Valdinoci,
Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[19] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[20] |
V. Tarasov and G. Zaslasvky,
Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885-889.
doi: 10.1016/j.cnsns.2006.03.005. |
[21] |
R. Zhuo, W. Chen, X. Cui and Z. Yuan,
Radial symmetry of positive solutions to equations
involving the fractional Laplacian, Discrete Contin.Dyn. Syst., 36 (2016), 1125-1141.
doi: 10.3934/dcds.2016.36.1125. |
show all references
References:
[1] |
D. Applebaum, Lévy Processes and Stochastic Calculus, 2nd ed, Cambridge Studies in Advanced Mathematics, 116, Cambridge University Press, Cambridge, 2009.
doi: 10.1017/CBO9780511809781. |
[2] |
J. Bertoin, Lévy Processes, Cambridge Tracts in Mathematics, 121 Cambridge University Press, Cambridge, 1996. |
[3] |
K. Bogdan,
The boundary Harnack principle for the fractional Laplacian, Studia Math., 123 (1997), 43-80.
doi: 10.4064/sm-123-1-43-80. |
[4] |
J. P. Bouchard and A. Georges, Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications, Physics reports, 195 (1990).
doi: 10.1016/0370-1573(90)90099-N. |
[5] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. in PDE, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[6] |
L. Caffarelli and L. Vasseur,
Drift diffusion equations with fractional diffusion and the quasigeostrophic equation, Ann. of Math. (2), 171 (2010), 1903-1930.
doi: 10.4007/annals.2010.171.1903. |
[7] |
X. Cabré and J. Tan,
Positive solutions of nonlinear problems involving the square root of
the Laplacian, Adv. in Math., 224 (2010), 2052-2093.
doi: 10.1016/j.aim.2010.01.025. |
[8] |
W. Chen, Y. Fang and R. Yang, Semilinear equations involving the fractional Laplacian on domains, arXiv: 1309.7499v1. |
[9] |
W. Chen, Y. Fang and R. Yang,
Liouville theorems involving the fractional Laplacian on a
half space, Adv. in Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013. |
[10] |
W. Chen and C. Li,
Regularity of solutions for a system of integral equation, Comm. Pure Appl. Anal., 4 (2005), 1-8.
doi: 10.3934/cpaa.2005.4.1. |
[11] |
W. Chen and C. Li, Methods on Nonlinear Elliptic Equations, AIMS. Ser. Differ. Equ. Dyn. Syst. vol.4 2010. |
[12] |
W. Chen, C. Li and B. Ou,
Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116. |
[13] |
P. Constantin, Euler equations, Navier-Stokes equations and turbulence, in Mathematical
Foundation of Turbulent Viscous Flows, Vol. 1871 of Lecture Notes in Math. 1–43, Springer,
Berlin, 2006.
doi: 10.1007/11545989_1. |
[14] |
P. Felmer and Y. Wang, Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian, Comm. Cont. Math., 16 (2014), 1350023.
doi: 10.1142/S0219199713500235. |
[15] |
Q. Guan,
Integration by parts formula for regional fractional Laplacian, Comm. Math. Phys., 266 (2006), 289-329.
doi: 10.1007/s00220-006-0054-9. |
[16] |
T. Kulczycki,
Properties of Green function of symmetric stable processes, Probability and Mathematical Statistics, 17 (1997), 339-364.
|
[17] |
Yan Li, A semilinear equation involving the fractional Laplacian in $\mathbb{R}^{n}$, J. Math. Anal. Appl., 7 (2015), |
[18] |
E. Nezza, G. Palatucci and E. Valdinoci,
Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[19] |
L. Silvestre,
Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153. |
[20] |
V. Tarasov and G. Zaslasvky,
Fractional dynamics of systems with long-range interaction, Comm. Nonl. Sci. Numer. Simul., 11 (2006), 885-889.
doi: 10.1016/j.cnsns.2006.03.005. |
[21] |
R. Zhuo, W. Chen, X. Cui and Z. Yuan,
Radial symmetry of positive solutions to equations
involving the fractional Laplacian, Discrete Contin.Dyn. Syst., 36 (2016), 1125-1141.
doi: 10.3934/dcds.2016.36.1125. |
[1] |
Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure and Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631 |
[2] |
Tingzhi Cheng. Monotonicity and symmetry of solutions to fractional Laplacian equation. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3587-3599. doi: 10.3934/dcds.2017154 |
[3] |
Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255 |
[4] |
Xinjing Wang. Liouville type theorem for Fractional Laplacian system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 5253-5268. doi: 10.3934/cpaa.2020236 |
[5] |
Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067 |
[6] |
Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029 |
[7] |
Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393 |
[8] |
Zhigang Wu, Hao Xu. Symmetry properties in systems of fractional Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1559-1571. doi: 10.3934/dcds.2019068 |
[9] |
Jianhai Bao, Xing Huang, Chenggui Yuan. New regularity of kolmogorov equation and application on approximation of semi-linear spdes with Hölder continuous drifts. Communications on Pure and Applied Analysis, 2019, 18 (1) : 341-360. doi: 10.3934/cpaa.2019018 |
[10] |
Changlu Liu, Shuangli Qiao. Symmetry and monotonicity for a system of integral equations. Communications on Pure and Applied Analysis, 2009, 8 (6) : 1925-1932. doi: 10.3934/cpaa.2009.8.1925 |
[11] |
Xiaoxue Ji, Pengcheng Niu, Pengyan Wang. Non-existence results for cooperative semi-linear fractional system via direct method of moving spheres. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1111-1128. doi: 10.3934/cpaa.2020051 |
[12] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[13] |
Begoña Barrios, Leandro Del Pezzo, Jorge García-Melián, Alexander Quaas. A Liouville theorem for indefinite fractional diffusion equations and its application to existence of solutions. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5731-5746. doi: 10.3934/dcds.2017248 |
[14] |
Leyun Wu, Pengcheng Niu. Symmetry and nonexistence of positive solutions to fractional p-Laplacian equations. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1573-1583. doi: 10.3934/dcds.2019069 |
[15] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[16] |
Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761 |
[17] |
Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661 |
[18] |
Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control and Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401 |
[19] |
Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control and Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013 |
[20] |
Tuan Anh Dao, Hironori Michihisa. Study of semi-linear $ \sigma $-evolution equations with frictional and visco-elastic damping. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1581-1608. doi: 10.3934/cpaa.2020079 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]