Advanced Search
Article Contents
Article Contents

Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions

  • * Corresponding author: Inbo Sim

    * Corresponding author: Inbo Sim 
The third author is supported by the National Research Foundation of Korea Grant funded by the Korea Government (MEST) (NRF-2018R1D1A3A03000678)
Abstract Full Text(HTML) Related Papers Cited by
  • We study positive solutions to (singular) boundary value problems of the form:

    $\left\{ \begin{align} & -\left( {{\varphi }_{p}}(u') \right)'=\lambda h(t)\frac{f(u)}{{{u}^{\alpha }}},~\ \ t\in (0,1),~~ \\ & u'(1)+c(u(1))u(1)=0,~ \\ & u(0)=0, \\ \end{align} \right.$

    where $\varphi_p(u): = |u|^{p-2}u$ with $p>1$ is the $p$-Laplacian operator of $u$, $λ>0$, $0≤α<1$, $c:[0,∞)\rightarrow (0,∞)$ is continuous and $h:(0,1)\rightarrow (0,∞)$ is continuous and integrable. We assume that $f∈ C[0,∞)$ is such that $f(0)<0$, $\lim_{s\rightarrow ∞}f(s) = ∞$ and $\frac{f(s)}{s^{α}}$ has a $p$-sublinear growth at infinity, namely, $\lim_{s \rightarrow ∞}\frac{f(s)}{s^{p-1+α}} = 0$. We will discuss nonexistence results for $λ≈ 0$, and existence and uniqueness results for $λ \gg 1$. We establish the existence result by a method of sub-supersolutions and the uniqueness result by establishing growth estimates for solutions.

    Mathematics Subject Classification: Primary: 34B16, 34B18; Secondary: 35J57.


    \begin{equation} \\ \end{equation}
  • 加载中
  •   H. Amann , Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976) , 620-709.  doi: 10.1137/1018114.
      D. Butler , E. Ko , E. K. Lee  and  R. Shivaji , Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pure Appl. Anal., 13 (2014) , 2713-2731.  doi: 10.3934/cpaa.2014.13.2713.
      R. S. Cantrell  and  C. Cosner , Density dependent behavior at habitat boundaries and the allee effect, Bull. Math. Biol., 69 (2007) , 2339-2360.  doi: 10.1007/s11538-007-9222-0.
      R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons, Chichester, 2004. doi: 10.1002/0470871296.
      D. Daners , Robin boundary value problems on arbitrary domains, Trans. Amer. Math. Soc., 352 (2000) , 4207-4236.  doi: 10.1090/S0002-9947-00-02444-2.
      D. A. Frank-KamenetskiiDiffusion and Heat Transfer in Chemical Kinetics, New York, Plenum Press, 1969. 
      J. Goddard II , E. K. Lee  and  R. Shivaji , Population models with diffusion, strong allee effect, and nonlinear boundary conditions, Nonlinear Anal., 74 (2011) , 6202-6208.  doi: 10.1016/j.na.2011.06.001.
      D. D. Hai , Uniqueness of positive solutions for a class of quasilinear problems, Nonlinear Anal., 69 (2008) , 2720-2732.  doi: 10.1016/j.na.2007.08.046.
      E. Ko , M. Ramaswamy  and  R. Shivaji , Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball, J. Math. Anal. Appl., 423 (2015) , 399-409.  doi: 10.1016/j.jmaa.2014.09.058.
      E. K. Lee , R. Shivaji  and  B. Son , Positive radial solutions to classes of singular problems on the exterior domain of a ball, J. Math. Anal. Appl., 434 (2016) , 1597-1611.  doi: 10.1016/j.jmaa.2015.09.072.
      P. Drábek, Topological and Variational Methods for Nonlinear Boundary Value Problems, 1st edition, Addison Wesley Longman Limited, Harlow, 1997
      M. D. Pino , M. Elgueta  and  R. Manásevich , A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p- 2}u')'+ f(t, u) = 0, u (0) = u (T) = 0, p> 1$, J. Differential Equations, 80 (1989) , 1-13.  doi: 10.1016/0022-0396(89)90093-4.
      L. Sankar, Classes of Singular Nonlinear Eigenvalue Problems with Semipositone Structure, Ph. D. thesis, Mississippi State University, 2013.
      N. N. SemenovChemical Kinetics and Chain Reactions, Oxford University Press, London, 1935. 
      R. Shivaji , I. Sim  and  B. Son , A uniqueness result for a semipositone p-Laplacian problem on the exterior of a ball, J. Math. Anal. Appl., 445 (2017) , 459-475.  doi: 10.1016/j.jmaa.2016.07.029.
      Y. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Consultants Bureau, New York, 1985. doi: 10.1007/978-1-4613-2349-5.
  • 加载中

Article Metrics

HTML views(662) PDF downloads(364) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint