We study positive solutions to (singular) boundary value problems of the form:
$\left\{ \begin{align} & -\left( {{\varphi }_{p}}(u') \right)'=\lambda h(t)\frac{f(u)}{{{u}^{\alpha }}},~\ \ t\in (0,1),~~ \\ & u'(1)+c(u(1))u(1)=0,~ \\ & u(0)=0, \\ \end{align} \right.$
where $\varphi_p(u): = |u|^{p-2}u$ with $p>1$ is the $p$-Laplacian operator of $u$, $λ>0$, $0≤α<1$, $c:[0,∞)\rightarrow (0,∞)$ is continuous and $h:(0,1)\rightarrow (0,∞)$ is continuous and integrable. We assume that $f∈ C[0,∞)$ is such that $f(0)<0$, $\lim_{s\rightarrow ∞}f(s) = ∞$ and $\frac{f(s)}{s^{α}}$ has a $p$-sublinear growth at infinity, namely, $\lim_{s \rightarrow ∞}\frac{f(s)}{s^{p-1+α}} = 0$. We will discuss nonexistence results for $λ≈ 0$, and existence and uniqueness results for $λ \gg 1$. We establish the existence result by a method of sub-supersolutions and the uniqueness result by establishing growth estimates for solutions.
Citation: |
H. Amann
, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev., 18 (1976)
, 620-709.
doi: 10.1137/1018114.![]() ![]() ![]() |
|
D. Butler
, E. Ko
, E. K. Lee
and R. Shivaji
, Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions, Commun. Pure Appl. Anal., 13 (2014)
, 2713-2731.
doi: 10.3934/cpaa.2014.13.2713.![]() ![]() ![]() |
|
R. S. Cantrell
and C. Cosner
, Density dependent behavior at habitat boundaries and the allee effect, Bull. Math. Biol., 69 (2007)
, 2339-2360.
doi: 10.1007/s11538-007-9222-0.![]() ![]() ![]() |
|
R. S. Cantrell and C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley &
Sons, Chichester, 2004.
doi: 10.1002/0470871296.![]() ![]() ![]() |
|
D. Daners
, Robin boundary value problems on arbitrary domains, Trans. Amer. Math. Soc., 352 (2000)
, 4207-4236.
doi: 10.1090/S0002-9947-00-02444-2.![]() ![]() ![]() |
|
D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, New York, Plenum Press, 1969.
![]() |
|
J. Goddard II
, E. K. Lee
and R. Shivaji
, Population models with diffusion, strong allee effect, and nonlinear boundary conditions, Nonlinear Anal., 74 (2011)
, 6202-6208.
doi: 10.1016/j.na.2011.06.001.![]() ![]() ![]() |
|
D. D. Hai
, Uniqueness of positive solutions for a class of quasilinear problems, Nonlinear Anal., 69 (2008)
, 2720-2732.
doi: 10.1016/j.na.2007.08.046.![]() ![]() ![]() |
|
E. Ko
, M. Ramaswamy
and R. Shivaji
, Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball, J. Math. Anal. Appl., 423 (2015)
, 399-409.
doi: 10.1016/j.jmaa.2014.09.058.![]() ![]() ![]() |
|
E. K. Lee
, R. Shivaji
and B. Son
, Positive radial solutions to classes of singular problems on the exterior domain of a ball, J. Math. Anal. Appl., 434 (2016)
, 1597-1611.
doi: 10.1016/j.jmaa.2015.09.072.![]() ![]() ![]() |
|
P. Drábek, Topological and Variational Methods for Nonlinear Boundary Value Problems,
1st edition, Addison Wesley Longman Limited, Harlow, 1997
![]() |
|
M. D. Pino
, M. Elgueta
and R. Manásevich
, A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p- 2}u')'+ f(t, u) = 0, u (0) = u (T) = 0, p> 1$, J. Differential Equations, 80 (1989)
, 1-13.
doi: 10.1016/0022-0396(89)90093-4.![]() ![]() ![]() |
|
L. Sankar, Classes of Singular Nonlinear Eigenvalue Problems with Semipositone Structure,
Ph. D. thesis, Mississippi State University, 2013.
![]() |
|
N. N. Semenov, Chemical Kinetics and Chain Reactions, Oxford University Press, London, 1935.
![]() |
|
R. Shivaji
, I. Sim
and B. Son
, A uniqueness result for a semipositone p-Laplacian problem on the exterior of a ball, J. Math. Anal. Appl., 445 (2017)
, 459-475.
doi: 10.1016/j.jmaa.2016.07.029.![]() ![]() ![]() |
|
Y. B. Zeldovich, G. I. Barenblatt, V. B. Librovich and G. M. Makhviladze, The Mathematical
Theory of Combustion and Explosions, Consultants Bureau, New York, 1985.
doi: 10.1007/978-1-4613-2349-5.![]() ![]() ![]() |