• Previous Article
    Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian
  • CPAA Home
  • This Issue
  • Next Article
    Backward compact and periodic random attractors for non-autonomous sine-Gordon equations with multiplicative noise
May  2019, 18(3): 1177-1203. doi: 10.3934/cpaa.2019057

The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations

Departamento de Matemáticas, Universidad Nacional de Colombia, A. A. 3840 Medellín, Colombia

Received  March 2018 Revised  August 2018 Published  November 2018

In this work we prove that the initial value problem (IVP) associated to the fractional two-dimensional Benjamin-Ono equation
$\left. \begin{array}{rl} u_t+D_x^{\alpha} u_x +\mathcal Hu_{yy} +uu_x &\hspace{-2mm} = 0, \qquad\qquad (x, y)\in\mathbb R^2, \; t\in\mathbb R, \\ u(x, y, 0)&\hspace{-2mm} = u_0(x, y), \end{array} \right\}\, , $
where
$0 < \alpha\leq1$, $D_x^{\alpha}$
denotes the operator defined through the Fourier transform by
$(D_x^{\alpha}f)\widehat{\;\;}(\xi, \eta): = |\xi|^{\alpha}\widehat{f}(\xi, \eta)\, , ~~~~~~~~~~~~~~~~~~~~~~~~(0.1)$
and
$\mathcal H$
denotes the Hilbert transform with respect to the variable x, is locally well posed in the Sobolev space
$H^s(\mathbb R^2)$ with $s>\dfrac32+\dfrac14(1-\alpha)$
.
Citation: Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1177-1203. doi: 10.3934/cpaa.2019057
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.

[2]

M. J. Ablowitz and H. Segur, Long internal waves in fluids of great depth, Stud. App. Math., 62 (1980), 249-262.  doi: 10.1002/sapm1980623249.

[3]

B. Akers and P. Milewski, A model equation for wave packet solitary waves arising from capillary-gravity flows, Studies in Applied Mathematics, 122 (2009), 249-274.  doi: 10.1111/j.1467-9590.2009.00432.x.

[4]

J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond., Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.1975.0035.

[5]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differential Equations, 261 (2016), 2041-2067.  doi: 10.1016/j.jde.2016.04.022.

[6]

A. Esfahani and A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011), 943-956.  doi: 10.1090/S0002-9939-2010-10532-4.

[7]

A. Esfahani and A. Pastor, Two dimensional solitary waves in shear flows, Calc. Var. Partial Differential Equations, 57 (2018), 57-102.  doi: 10.1007/s00526-018-1383-1.

[8]

T. Kato, Quasilinear equations of evolution, with applications to PDE, Lecture Notes in Mathematics, vol. 448, Springer, Berlin, (1975), 25–70.

[9]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99.  doi: 10.1007/BF01647967.

[10]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.

[11]

C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. I.H. PoincaréAN, 21 (2004), 87-838.  doi: 10.1016/j.anihpc.2003.12.002.

[12]

C. Kenig and K. D. Koenig, On the local well posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003), 879-895.  doi: 10.4310/MRL.2003.v10.n6.a13.

[13]

C. KenigG. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Mathematical Journal, 59 (1989), 585-610.  doi: 10.1215/S0012-7094-89-05927-9.

[14]

C. KenigG. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.  doi: 10.1512/iumj.1991.40.40003.

[15]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.

[16]

B. Kim, Three-dimensional Solitary Waves in Dispersive Wave Systems, PhD thesis, Massachusets Institute of Technology, Department of Mathematics, Cambridge, MA, 2006.

[17]

H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbb R)$, IMRN International Mathematics Research Notices, 26 (2003), 1449–1464. doi: 10.1155/S1073792803211260.

[18]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2015. doi: 10.1007/978-1-4939-2181-2.

[19]

F. LinaresD. Pilod and J. C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, Siam J. Math. Anal., 46 (2014), 1505-1537.  doi: 10.1137/130912001.

[20]

F. LinaresD. Pilod and J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Analysis, 50 (2018), 3172-3209.  doi: 10.1137/17M1145379.

[21]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, Siam J. Math. Anal., 33 (2001), 982-988.  doi: 10.1137/S0036141001385307.

[22]

D. E. Pelinovsky and V. I. Shrira, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995), 195-202. 

[23]

G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4 (1991), 527-542. 

[24]

G. Preciado and F. Soriano, On the Cauchy problem of a two-dimensional Benjamin-Ono equation, arXiv:1503.04290v1 [Math.AP] 14 Mar 2015. doi: 10.12732/ijam.v26i6.1.

[25]

J. C. Saut, Sur quelques gééalisations de l'éuation de Korteweg-de Vries, J. Math. Pures Appl., 58 (1979), 21-61. 

[26]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, Regional Conference Series in Mathematics, Number 106, AMS, 2006. doi: 10.1090/cbms/106.

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.

[2]

M. J. Ablowitz and H. Segur, Long internal waves in fluids of great depth, Stud. App. Math., 62 (1980), 249-262.  doi: 10.1002/sapm1980623249.

[3]

B. Akers and P. Milewski, A model equation for wave packet solitary waves arising from capillary-gravity flows, Studies in Applied Mathematics, 122 (2009), 249-274.  doi: 10.1111/j.1467-9590.2009.00432.x.

[4]

J. L. Bona and R. Smith, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond., Ser. A, 278 (1975), 555-601.  doi: 10.1098/rsta.1975.0035.

[5]

A. Cunha and A. Pastor, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differential Equations, 261 (2016), 2041-2067.  doi: 10.1016/j.jde.2016.04.022.

[6]

A. Esfahani and A. Pastor, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011), 943-956.  doi: 10.1090/S0002-9939-2010-10532-4.

[7]

A. Esfahani and A. Pastor, Two dimensional solitary waves in shear flows, Calc. Var. Partial Differential Equations, 57 (2018), 57-102.  doi: 10.1007/s00526-018-1383-1.

[8]

T. Kato, Quasilinear equations of evolution, with applications to PDE, Lecture Notes in Mathematics, vol. 448, Springer, Berlin, (1975), 25–70.

[9]

T. Kato, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979), 89-99.  doi: 10.1007/BF01647967.

[10]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.

[11]

C. Kenig, On the local and global well-posedness theory for the KP-I equation, Ann. I.H. PoincaréAN, 21 (2004), 87-838.  doi: 10.1016/j.anihpc.2003.12.002.

[12]

C. Kenig and K. D. Koenig, On the local well posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003), 879-895.  doi: 10.4310/MRL.2003.v10.n6.a13.

[13]

C. KenigG. Ponce and L. Vega, On the (generalized) Korteweg-de Vries equation, Duke Mathematical Journal, 59 (1989), 585-610.  doi: 10.1215/S0012-7094-89-05927-9.

[14]

C. KenigG. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991), 33-69.  doi: 10.1512/iumj.1991.40.40003.

[15]

C. KenigG. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993), 527-620.  doi: 10.1002/cpa.3160460405.

[16]

B. Kim, Three-dimensional Solitary Waves in Dispersive Wave Systems, PhD thesis, Massachusets Institute of Technology, Department of Mathematics, Cambridge, MA, 2006.

[17]

H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbb R)$, IMRN International Mathematics Research Notices, 26 (2003), 1449–1464. doi: 10.1155/S1073792803211260.

[18]

F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2015. doi: 10.1007/978-1-4939-2181-2.

[19]

F. LinaresD. Pilod and J. C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, Siam J. Math. Anal., 46 (2014), 1505-1537.  doi: 10.1137/130912001.

[20]

F. LinaresD. Pilod and J. C. Saut, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Analysis, 50 (2018), 3172-3209.  doi: 10.1137/17M1145379.

[21]

L. MolinetJ. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations, Siam J. Math. Anal., 33 (2001), 982-988.  doi: 10.1137/S0036141001385307.

[22]

D. E. Pelinovsky and V. I. Shrira, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995), 195-202. 

[23]

G. Ponce, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4 (1991), 527-542. 

[24]

G. Preciado and F. Soriano, On the Cauchy problem of a two-dimensional Benjamin-Ono equation, arXiv:1503.04290v1 [Math.AP] 14 Mar 2015. doi: 10.12732/ijam.v26i6.1.

[25]

J. C. Saut, Sur quelques gééalisations de l'éuation de Korteweg-de Vries, J. Math. Pures Appl., 58 (1979), 21-61. 

[26]

T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, Regional Conference Series in Mathematics, Number 106, AMS, 2006. doi: 10.1090/cbms/106.

[1]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[2]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[3]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete and Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[4]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[5]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[6]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[7]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[8]

Boling Guo, Zhaohui Huo. The global attractor of the damped, forced generalized Korteweg de Vries-Benjamin-Ono equation in $L^2$. Discrete and Continuous Dynamical Systems, 2006, 16 (1) : 121-136. doi: 10.3934/dcds.2006.16.121

[9]

Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689

[10]

A. C. Nascimento. On special regularity properties of solutions of the benjamin-ono-zakharov-kuznetsov (bo-zk) equation. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4285-4325. doi: 10.3934/cpaa.2020194

[11]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[12]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[13]

Thomas Kappeler, Riccardo Montalto. Normal form coordinates for the Benjamin-Ono equation having expansions in terms of pseudo-differential operators. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022048

[14]

Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185

[15]

Robert Schippa. On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5189-5215. doi: 10.3934/dcds.2020225

[16]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[17]

Luc Molinet, Francis Ribaud. Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295

[18]

José R. Quintero, Alex M. Montes. Exact controllability and stabilization for a general internal wave system of Benjamin-Ono type. Evolution Equations and Control Theory, 2022, 11 (3) : 681-709. doi: 10.3934/eect.2021021

[19]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure and Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[20]

Anne-Sophie de Suzzoni. Continuity of the flow of the Benjamin-Bona-Mahony equation on probability measures. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 2905-2920. doi: 10.3934/dcds.2015.35.2905

2020 Impact Factor: 1.916

Metrics

  • PDF downloads (235)
  • HTML views (231)
  • Cited by (4)

[Back to Top]