\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations

Abstract Full Text(HTML) Related Papers Cited by
  • In this work we prove that the initial value problem (IVP) associated to the fractional two-dimensional Benjamin-Ono equation

    $\left. \begin{array}{rl} u_t+D_x^{\alpha} u_x +\mathcal Hu_{yy} +uu_x &\hspace{-2mm} = 0, \qquad\qquad (x, y)\in\mathbb R^2, \; t\in\mathbb R, \\ u(x, y, 0)&\hspace{-2mm} = u_0(x, y), \end{array} \right\}\, , $

    where $0 < \alpha\leq1$, $D_x^{\alpha}$ denotes the operator defined through the Fourier transform by

    $(D_x^{\alpha}f)\widehat{\;\;}(\xi, \eta): = |\xi|^{\alpha}\widehat{f}(\xi, \eta)\, , ~~~~~~~~~~~~~~~~~~~~~~~~(0.1)$

    and $\mathcal H$ denotes the Hilbert transform with respect to the variable x, is locally well posed in the Sobolev space $H^s(\mathbb R^2)$ with $s>\dfrac32+\dfrac14(1-\alpha)$.

    Mathematics Subject Classification: 35Q53.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  •   M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511623998.
      M. J. Ablowitz  and  H. Segur , Long internal waves in fluids of great depth, Stud. App. Math., 62 (1980) , 249-262.  doi: 10.1002/sapm1980623249.
      B. Akers  and  P. Milewski , A model equation for wave packet solitary waves arising from capillary-gravity flows, Studies in Applied Mathematics, 122 (2009) , 249-274.  doi: 10.1111/j.1467-9590.2009.00432.x.
      J. L. Bona  and  R. Smith , The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond., Ser. A, 278 (1975) , 555-601.  doi: 10.1098/rsta.1975.0035.
      A. Cunha  and  A. Pastor , The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differential Equations, 261 (2016) , 2041-2067.  doi: 10.1016/j.jde.2016.04.022.
      A. Esfahani  and  A. Pastor , Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011) , 943-956.  doi: 10.1090/S0002-9939-2010-10532-4.
      A. Esfahani  and  A. Pastor , Two dimensional solitary waves in shear flows, Calc. Var. Partial Differential Equations, 57 (2018) , 57-102.  doi: 10.1007/s00526-018-1383-1.
      T. Kato, Quasilinear equations of evolution, with applications to PDE, Lecture Notes in Mathematics, vol. 448, Springer, Berlin, (1975), 25–70.
      T. Kato , On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979) , 89-99.  doi: 10.1007/BF01647967.
      T. Kato  and  G. Ponce , Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988) , 891-907.  doi: 10.1002/cpa.3160410704.
      C. Kenig , On the local and global well-posedness theory for the KP-I equation, Ann. I.H. PoincaréAN, 21 (2004) , 87-838.  doi: 10.1016/j.anihpc.2003.12.002.
      C. Kenig  and  K. D. Koenig , On the local well posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003) , 879-895.  doi: 10.4310/MRL.2003.v10.n6.a13.
      C. Kenig , G. Ponce  and  L. Vega , On the (generalized) Korteweg-de Vries equation, Duke Mathematical Journal, 59 (1989) , 585-610.  doi: 10.1215/S0012-7094-89-05927-9.
      C. Kenig , G. Ponce  and  L. Vega , Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991) , 33-69.  doi: 10.1512/iumj.1991.40.40003.
      C. Kenig , G. Ponce  and  L. Vega , Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993) , 527-620.  doi: 10.1002/cpa.3160460405.
      B. Kim, Three-dimensional Solitary Waves in Dispersive Wave Systems, PhD thesis, Massachusets Institute of Technology, Department of Mathematics, Cambridge, MA, 2006.
      H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbb R)$, IMRN International Mathematics Research Notices, 26 (2003), 1449–1464. doi: 10.1155/S1073792803211260.
      F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2015. doi: 10.1007/978-1-4939-2181-2.
      F. Linares , D. Pilod  and  J. C. Saut , Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, Siam J. Math. Anal., 46 (2014) , 1505-1537.  doi: 10.1137/130912001.
      F. Linares , D. Pilod  and  J. C. Saut , The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Analysis, 50 (2018) , 3172-3209.  doi: 10.1137/17M1145379.
      L. Molinet , J. C. Saut  and  N. Tzvetkov , Ill-posedness issues for the Benjamin-Ono and related equations, Siam J. Math. Anal., 33 (2001) , 982-988.  doi: 10.1137/S0036141001385307.
      D. E. Pelinovsky  and  V. I. Shrira , Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995) , 195-202. 
      G. Ponce , On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4 (1991) , 527-542. 
      G. Preciado and F. Soriano, On the Cauchy problem of a two-dimensional Benjamin-Ono equation, arXiv:1503.04290v1 [Math.AP] 14 Mar 2015. doi: 10.12732/ijam.v26i6.1.
      J. C. Saut , Sur quelques gééalisations de l'éuation de Korteweg-de Vries, J. Math. Pures Appl., 58 (1979) , 21-61. 
      T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, Regional Conference Series in Mathematics, Number 106, AMS, 2006. doi: 10.1090/cbms/106.
  • 加载中
SHARE

Article Metrics

HTML views(403) PDF downloads(258) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return