In this work we prove that the initial value problem (IVP) associated to the fractional two-dimensional Benjamin-Ono equation
$\left. \begin{array}{rl} u_t+D_x^{\alpha} u_x +\mathcal Hu_{yy} +uu_x &\hspace{-2mm} = 0, \qquad\qquad (x, y)\in\mathbb R^2, \; t\in\mathbb R, \\ u(x, y, 0)&\hspace{-2mm} = u_0(x, y), \end{array} \right\}\, , $
where $0 < \alpha\leq1$, $D_x^{\alpha}$ denotes the operator defined through the Fourier transform by
$(D_x^{\alpha}f)\widehat{\;\;}(\xi, \eta): = |\xi|^{\alpha}\widehat{f}(\xi, \eta)\, , ~~~~~~~~~~~~~~~~~~~~~~~~(0.1)$
and $\mathcal H$ denotes the Hilbert transform with respect to the variable x, is locally well posed in the Sobolev space $H^s(\mathbb R^2)$ with $s>\dfrac32+\dfrac14(1-\alpha)$.
Citation: |
M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Notes Series. Cambridge University Press, Cambridge, 1991.
doi: 10.1017/CBO9780511623998.![]() ![]() ![]() |
|
M. J. Ablowitz
and H. Segur
, Long internal waves in fluids of great depth, Stud. App. Math., 62 (1980)
, 249-262.
doi: 10.1002/sapm1980623249.![]() ![]() ![]() |
|
B. Akers
and P. Milewski
, A model equation for wave packet solitary waves arising from capillary-gravity flows, Studies in Applied Mathematics, 122 (2009)
, 249-274.
doi: 10.1111/j.1467-9590.2009.00432.x.![]() ![]() ![]() |
|
J. L. Bona
and R. Smith
, The initial value problem for the Korteweg-de Vries equation, Philos. Trans. R. Soc. Lond., Ser. A, 278 (1975)
, 555-601.
doi: 10.1098/rsta.1975.0035.![]() ![]() ![]() |
|
A. Cunha
and A. Pastor
, The IVP for the Benjamin-Ono-Zakharov-Kuznetsov equation in low regularity Sobolev spaces, J. Differential Equations, 261 (2016)
, 2041-2067.
doi: 10.1016/j.jde.2016.04.022.![]() ![]() ![]() |
|
A. Esfahani
and A. Pastor
, Ill-posedness results for the (generalized) Benjamin-Ono-Zakharov-Kuznetsov equation, Proc. Amer. Math. Soc., 139 (2011)
, 943-956.
doi: 10.1090/S0002-9939-2010-10532-4.![]() ![]() ![]() |
|
A. Esfahani
and A. Pastor
, Two dimensional solitary waves in shear flows, Calc. Var. Partial Differential Equations, 57 (2018)
, 57-102.
doi: 10.1007/s00526-018-1383-1.![]() ![]() ![]() |
|
T. Kato, Quasilinear equations of evolution, with applications to PDE, Lecture Notes in Mathematics, vol. 448, Springer, Berlin, (1975), 25–70.
![]() ![]() |
|
T. Kato
, On the Korteweg-de Vries equation, Manuscripta Math., 28 (1979)
, 89-99.
doi: 10.1007/BF01647967.![]() ![]() ![]() |
|
T. Kato
and G. Ponce
, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988)
, 891-907.
doi: 10.1002/cpa.3160410704.![]() ![]() ![]() |
|
C. Kenig
, On the local and global well-posedness theory for the KP-I equation, Ann. I.H. PoincaréAN, 21 (2004)
, 87-838.
doi: 10.1016/j.anihpc.2003.12.002.![]() ![]() ![]() |
|
C. Kenig
and K. D. Koenig
, On the local well posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., 10 (2003)
, 879-895.
doi: 10.4310/MRL.2003.v10.n6.a13.![]() ![]() ![]() |
|
C. Kenig
, G. Ponce
and L. Vega
, On the (generalized) Korteweg-de Vries equation, Duke Mathematical Journal, 59 (1989)
, 585-610.
doi: 10.1215/S0012-7094-89-05927-9.![]() ![]() ![]() |
|
C. Kenig
, G. Ponce
and L. Vega
, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., 40 (1991)
, 33-69.
doi: 10.1512/iumj.1991.40.40003.![]() ![]() ![]() |
|
C. Kenig
, G. Ponce
and L. Vega
, Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993)
, 527-620.
doi: 10.1002/cpa.3160460405.![]() ![]() ![]() |
|
B. Kim, Three-dimensional Solitary Waves in Dispersive Wave Systems, PhD thesis, Massachusets Institute of Technology, Department of Mathematics, Cambridge, MA, 2006.
![]() ![]() |
|
H. Koch and N. Tzvetkov, On the local well-posedness of the Benjamin-Ono equation in $H^s(\mathbb R)$, IMRN International Mathematics Research Notices, 26 (2003), 1449–1464.
doi: 10.1155/S1073792803211260.![]() ![]() ![]() |
|
F. Linares and G. Ponce, Introduction to Nonlinear Dispersive Equations, Universitext, Springer, 2015.
doi: 10.1007/978-1-4939-2181-2.![]() ![]() ![]() |
|
F. Linares
, D. Pilod
and J. C. Saut
, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory, Siam J. Math. Anal., 46 (2014)
, 1505-1537.
doi: 10.1137/130912001.![]() ![]() ![]() |
|
F. Linares
, D. Pilod
and J. C. Saut
, The Cauchy problem for the fractional Kadomtsev-Petviashvili equations, SIAM J. Math. Analysis, 50 (2018)
, 3172-3209.
doi: 10.1137/17M1145379.![]() ![]() ![]() |
|
L. Molinet
, J. C. Saut
and N. Tzvetkov
, Ill-posedness issues for the Benjamin-Ono and related equations, Siam J. Math. Anal., 33 (2001)
, 982-988.
doi: 10.1137/S0036141001385307.![]() ![]() ![]() |
|
D. E. Pelinovsky
and V. I. Shrira
, Collapse transformation for self-focusing solitary waves in boundary-layer type shear flows, Physics Letters A, 206 (1995)
, 195-202.
![]() |
|
G. Ponce
, On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, 4 (1991)
, 527-542.
![]() ![]() |
|
G. Preciado and F. Soriano, On the Cauchy problem of a two-dimensional Benjamin-Ono equation, arXiv:1503.04290v1 [Math.AP] 14 Mar 2015.
doi: 10.12732/ijam.v26i6.1.![]() ![]() ![]() |
|
J. C. Saut
, Sur quelques gééalisations de l'éuation de Korteweg-de Vries, J. Math. Pures Appl., 58 (1979)
, 21-61.
![]() ![]() |
|
T. Tao, Nonlinear Dispersive Equations. Local and Global Analysis, Regional Conference Series in Mathematics, Number 106, AMS, 2006.
doi: 10.1090/cbms/106.![]() ![]() ![]() |