We consider a nonlocal parabolic equation associated with the fractional p-laplace operator, which was studied by Gal and Warm in [On some degenerate non-local parabolic equation associated with the fractional p-Laplacian. Dyn. Partial Differ. Equ., 14(1): 47-77, 2017]. By exploiting the boundary condition and the variational structure of the equation, according to the size of the initial dada, we prove the finite time blow-up, global existence, vacuum isolating phenomenon of the solutions. Furthermore, the upper and lower bounds of the blow-up time for blow-up solutions are also studied. The results generalize the results got by Gal and Warm.
Citation: |
D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 1996, Springer-Verlag, Berlin.
doi: 10.1007/978-3-662-03282-4.![]() ![]() ![]() |
|
D. Applebaum
, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004)
, 1336-1347.
![]() ![]() |
|
M. Caponi
and P. Pucci
, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016)
, 2099-2129.
doi: 10.1007/s10231-016-0555-x.![]() ![]() ![]() |
|
H. Chen
and S. Y. Tian
, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015)
, 4424-4442.
doi: 10.1016/j.jde.2015.01.038.![]() ![]() ![]() |
|
S. Dipierro
, G. Palatucci
and E. Valdinoci
, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania), 68 (2013)
, 201-216.
![]() ![]() |
|
P. Felmer
, A. Quaas
and J. G. Tan
, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012)
, 1237-1262.
doi: 10.1017/S0308210511000746.![]() ![]() ![]() |
|
A. Fiscella
and P. Pucci
, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35 (2017)
, 350-378.
doi: 10.1016/j.nonrwa.2016.11.004.![]() ![]() ![]() |
|
A. Fiscella
, R. A Servadei
and E. Valdinoci
, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015)
, 235-253.
doi: 10.5186/aasfm.2015.4009.![]() ![]() ![]() |
|
C. G. Gal
and M. Warma
, On some degenerate non-local parabolic equation associated with the fractional p-Laplacian, Dyn. Partial Differ. Equ., 14 (2017)
, 47-77.
doi: 10.4310/DPDE.2017.v14.n1.a4.![]() ![]() ![]() |
|
P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, (1985), Pitman (Advanced Publishing Program), Boston, MA.
![]() ![]() |
|
P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 69 of Classics in Applied Mathematics, 2011, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner.
doi: 10.1137/1.9781611972030.ch1.![]() ![]() ![]() |
|
H. A. Levine
, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au+{\mathcal F}(u)$, Trans. Amer. Math. Soc., 192 (1974)
, 1-21.
doi: 10.2307/1996814.![]() ![]() ![]() |
|
X. L. Li
and B. Y. Liu
, Vacuum isolating, blow up threshold, and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017)
, 101503.
doi: 10.1063/1.5004668.![]() ![]() ![]() |
|
J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, 1972, Springer-Verlag, New York-Heidelberg, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.
![]() ![]() |
|
Y. C. Liu
, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003)
, 155-169.
doi: 10.1016/S0022-0396(02)00020-7.![]() ![]() ![]() |
|
Y. C. Liu
and J. S. Zhao
, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006)
, 2665-2687.
doi: 10.1016/j.na.2005.09.011.![]() ![]() ![]() |
|
E. D. Nezza
, G. Palatucci
and E. Valdinoci
, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012)
, 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
|
F. A. Vaillo, J. M. Mazón, J. D. Rossi and J. J. T. Melero, Nonlocal Diffusion Problems, volume 165 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010.
doi: 10.1090/surv/165.![]() ![]() ![]() |
|
M. Warma
, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015)
, 499-547.
doi: 10.1007/s11118-014-9443-4.![]() ![]() ![]() |
|
M. Q. Xiang
, G. M. Bisci
, G. H. Tian
and B. L. Zhang
, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 29 (2016)
, 357-374.
doi: 10.1088/0951-7715/29/2/357.![]() ![]() ![]() |
|
R. Z. Xu
, Y. B. Yang
, B. W. Liu
, J. H. Shen
and S. B. Huang
, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015)
, 955-976.
doi: 10.1007/s00033-014-0459-9.![]() ![]() ![]() |