May  2019, 18(3): 1205-1226. doi: 10.3934/cpaa.2019058

Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian

1. 

School of Mathematics and Statistics, Southwest University, Chongqing, 400715, China

2. 

School of Mathematical Sciences, Guizhou Normal University, Guiyang, 550025, China

* Corresponding author

Received  March 2018 Revised  July 2018 Published  November 2018

Fund Project: This work is supported by NSFC grant 11201380 and the Basic and Advanced Research Project of CQC-STC grant cstc2016jcyjA0018.

We consider a nonlocal parabolic equation associated with the fractional p-laplace operator, which was studied by Gal and Warm in [On some degenerate non-local parabolic equation associated with the fractional p-Laplacian. Dyn. Partial Differ. Equ., 14(1): 47-77, 2017]. By exploiting the boundary condition and the variational structure of the equation, according to the size of the initial dada, we prove the finite time blow-up, global existence, vacuum isolating phenomenon of the solutions. Furthermore, the upper and lower bounds of the blow-up time for blow-up solutions are also studied. The results generalize the results got by Gal and Warm.

Citation: Ronghua Jiang, Jun Zhou. Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1205-1226. doi: 10.3934/cpaa.2019058
References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 1996, Springer-Verlag, Berlin. doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099-2129.  doi: 10.1007/s10231-016-0555-x.  Google Scholar

[4]

H. Chen and S. Y. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[5]

S. DipierroG. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania), 68 (2013), 201-216.   Google Scholar

[6]

P. FelmerA. Quaas and J. G. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[7]

A. Fiscella and P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35 (2017), 350-378.  doi: 10.1016/j.nonrwa.2016.11.004.  Google Scholar

[8]

A. FiscellaR. A Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[9]

C. G. Gal and M. Warma, On some degenerate non-local parabolic equation associated with the fractional p-Laplacian, Dyn. Partial Differ. Equ., 14 (2017), 47-77.  doi: 10.4310/DPDE.2017.v14.n1.a4.  Google Scholar

[10]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, (1985), Pitman (Advanced Publishing Program), Boston, MA.  Google Scholar

[11]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 69 of Classics in Applied Mathematics, 2011, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[12]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au+{\mathcal F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[13]

X. L. Li and B. Y. Liu, Vacuum isolating, blow up threshold, and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017), 101503.  doi: 10.1063/1.5004668.  Google Scholar

[14]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, 1972, Springer-Verlag, New York-Heidelberg, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.  Google Scholar

[15]

Y. C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[16]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[17]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

F. A. Vaillo, J. M. Mazón, J. D. Rossi and J. J. T. Melero, Nonlocal Diffusion Problems, volume 165 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.  Google Scholar

[19]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.  doi: 10.1007/s11118-014-9443-4.  Google Scholar

[20]

M. Q. XiangG. M. BisciG. H. Tian and B. L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 29 (2016), 357-374.  doi: 10.1088/0951-7715/29/2/357.  Google Scholar

[21]

R. Z. XuY. B. YangB. W. LiuJ. H. Shen and S. B. Huang, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015), 955-976.  doi: 10.1007/s00033-014-0459-9.  Google Scholar

show all references

References:
[1]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, volume 314 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 1996, Springer-Verlag, Berlin. doi: 10.1007/978-3-662-03282-4.  Google Scholar

[2]

D. Applebaum, Lévy processes-from probability to finance and quantum groups, Notices Amer. Math. Soc., 51 (2004), 1336-1347.   Google Scholar

[3]

M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat. Pura Appl., 195 (2016), 2099-2129.  doi: 10.1007/s10231-016-0555-x.  Google Scholar

[4]

H. Chen and S. Y. Tian, Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity, J. Differential Equations, 258 (2015), 4424-4442.  doi: 10.1016/j.jde.2015.01.038.  Google Scholar

[5]

S. DipierroG. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Matematiche (Catania), 68 (2013), 201-216.   Google Scholar

[6]

P. FelmerA. Quaas and J. G. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[7]

A. Fiscella and P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl., 35 (2017), 350-378.  doi: 10.1016/j.nonrwa.2016.11.004.  Google Scholar

[8]

A. FiscellaR. A Servadei and E. Valdinoci, Density properties for fractional Sobolev spaces, Ann. Acad. Sci. Fenn. Math., 40 (2015), 235-253.  doi: 10.5186/aasfm.2015.4009.  Google Scholar

[9]

C. G. Gal and M. Warma, On some degenerate non-local parabolic equation associated with the fractional p-Laplacian, Dyn. Partial Differ. Equ., 14 (2017), 47-77.  doi: 10.4310/DPDE.2017.v14.n1.a4.  Google Scholar

[10]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 24 of Monographs and Studies in Mathematics, (1985), Pitman (Advanced Publishing Program), Boston, MA.  Google Scholar

[11]

P. Grisvard, Elliptic Problems in Nonsmooth Domains, volume 69 of Classics in Applied Mathematics, 2011, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA. Reprint of the 1985 original [MR0775683], With a foreword by Susanne C. Brenner. doi: 10.1137/1.9781611972030.ch1.  Google Scholar

[12]

H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{tt} = -Au+{\mathcal F}(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21.  doi: 10.2307/1996814.  Google Scholar

[13]

X. L. Li and B. Y. Liu, Vacuum isolating, blow up threshold, and asymptotic behavior of solutions for a nonlocal parabolic equation, J. Math. Phys., 58 (2017), 101503.  doi: 10.1063/1.5004668.  Google Scholar

[14]

J. L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications, Vol. I, 1972, Springer-Verlag, New York-Heidelberg, Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181.  Google Scholar

[15]

Y. C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differential Equations, 192 (2003), 155-169.  doi: 10.1016/S0022-0396(02)00020-7.  Google Scholar

[16]

Y. C. Liu and J. S. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665-2687.  doi: 10.1016/j.na.2005.09.011.  Google Scholar

[17]

E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[18]

F. A. Vaillo, J. M. Mazón, J. D. Rossi and J. J. T. Melero, Nonlocal Diffusion Problems, volume 165 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI; Real Sociedad Matemática Española, Madrid, 2010. doi: 10.1090/surv/165.  Google Scholar

[19]

M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499-547.  doi: 10.1007/s11118-014-9443-4.  Google Scholar

[20]

M. Q. XiangG. M. BisciG. H. Tian and B. L. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the fractional p-Laplacian, Nonlinearity, 29 (2016), 357-374.  doi: 10.1088/0951-7715/29/2/357.  Google Scholar

[21]

R. Z. XuY. B. YangB. W. LiuJ. H. Shen and S. B. Huang, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015), 955-976.  doi: 10.1007/s00033-014-0459-9.  Google Scholar

[1]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[2]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[3]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[4]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[5]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[6]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[7]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[8]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[9]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[10]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[11]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[12]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[13]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[16]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[17]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[18]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[19]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[20]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (198)
  • HTML views (281)
  • Cited by (4)

Other articles
by authors

[Back to Top]