May  2019, 18(3): 1227-1246. doi: 10.3934/cpaa.2019059

Reaction of the fluid flow on time-dependent boundary perturbation

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia

Received  March 2018 Revised  July 2018 Published  November 2018

The aim of this paper is to investigate the effects of time-dependent boundary perturbation on the flow of a viscous fluid via asymptotic analysis. We start from a simple rectangular domain and then perturb the upper part of its boundary by the product of a small parameter $\varepsilon$ and some smooth function $h(x, t)$. The complete asymptotic expansion (in powers of $\varepsilon$) of the solution of the evolutionary Stokes system has been constructed. The convergence of the expansion has been proved providing the rigorous justification of the formally derived asymptotic model.

Citation: Eduard Marušić-Paloka, Igor Pažanin. Reaction of the fluid flow on time-dependent boundary perturbation. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1227-1246. doi: 10.3934/cpaa.2019059
References:
[1]

Y. AchdouO. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Computer. Phys, 147 (1998), 187-218.  doi: 10.1006/jcph.1998.6088.  Google Scholar

[2]

K. AmedodjiG. Bayada and M. Chambat, On the unsteady Navier-Stokes equations in a time-moving domain with velocity-pressure boundary conditions, Nonlinear Anal. TMA, 49 (2002), 565-587.  doi: 10.1016/S0362-546X(01)00123-7.  Google Scholar

[3]

G. Bayada and M. Chambat, New models in the theory of the hydrodynamic lubrication of rough surfaces, J. Tribol., 110 (1988), 402-407.   Google Scholar

[4]

N. BenhabouchaM. Chambat and I. Ciuperca, Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary, Quart. Appl. Math., 63 (2005), 369-400.  doi: 10.1090/S0033-569X-05-00963-3.  Google Scholar

[5]

J. M. Bernard, Time-dependent Stokes and Navier-Stokes problems with boundary conditions, Nonlinear Anal. RWA, 4 (2003), 805-839.  doi: 10.1016/S1468-1218(03)00016-6.  Google Scholar

[6]

D. BreschC. ChoquetL. ChupinT. Colin and M. Gisclon, Roughness-induced effect at main order on the Reynolds approximation, SIAM Multiscale Model. Simul., 8 (2010), 997-1017.  doi: 10.1137/090754996.  Google Scholar

[7]

S. ČanićA. MikelićD. Lamponi and J. Tambača, Self-consistent effective equations modeling the blood flow in medium-to-large compliant arteries, SIAM Multiscale Model. Simul., 3 (2005), 559-596.  doi: 10.1137/030602605.  Google Scholar

[8]

L. Chupin and S. Martin, Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., 44 (2012), 3041-3070.  doi: 10.1137/110824371.  Google Scholar

[9]

O. Damak and E. Hadj-Taieb, Waterhammer in flexible pipes, in Design and modeling of mechanical systems, Springer, 373-380, 2013. Google Scholar

[10]

D. Henry, Perturbation of the Boundary in Boundary-value Problems, London mathematical society lecture notes series, 318, Cambridge university press, 2005. doi: 10.1017/CBO9780511546730.  Google Scholar

[11]

Jäger and A. W. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Equations, 170 (2001), 96-122.  doi: 10.1006/jdeq.2000.3814.  Google Scholar

[12]

H. Le DretR. LewandowskiD. Priour and F. Changenau, Numerical simulations of a cod end net Part 1: equilibrium in a uniform flow, Elasticity J., 76 (2004), 139-162.  doi: 10.1007/s10659-004-6668-2.  Google Scholar

[13]

E. Marušić-Paloka, Effects of small boundary perturbation on flow of viscous fluid, ZAMM - J. Appl. Math. Mech., 96 (2016), 1103-1118.  doi: 10.1002/zamm.201500195.  Google Scholar

[14]

E. Marušić-PalokaI. Pažanin and M. Radulović, Flow of a micropolar fluid through a channel with small boundary perturbation, Z. Naturforsch. A, 71 (2016), 607-619.   Google Scholar

[15]

E. Marušić-Paloka and I. Pažanin, On the Darcy-Brinkman flow through a channel with slightly perturbed boundary, Transp. Porous. Med., 117 (2017), 27-44.  doi: 10.1007/s11242-016-0818-4.  Google Scholar

[16]

I. Pažanin, A note on the solute dispersion in a porous medium, B. Malays. Math. Sci. So., (2017).  doi: 10.1007/s40840-017-00508-6.  Google Scholar

[17]

I. Pažanin and F. J. Suárez-Grau, Analysis of the thin film flow in a rough thin domain filled with micropolar fluid, Comput. Math. Appl., 68 (2014), 1915-1932.  doi: 10.1016/j.camwa.2014.10.003.  Google Scholar

[18]

C. Peskin, Flow patterns around heart valves, J. Comput. Phys., 10 (1972), 252-271.   Google Scholar

[19]

G. D. RigbyL. StrezovC. D. RilleyS. D. ScifferJ. A. Lucas and G. M. Evans, Hydrodynamics of fluid flow approaching a moving bounday, Metall. Mater. Trans. B, 31 (2000), 1117-1123.   Google Scholar

[20]

A. Szeri, Fluid Film Lubrication, Cambridge university press, 2nd edition 2010. Google Scholar

show all references

References:
[1]

Y. AchdouO. Pironneau and F. Valentin, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Computer. Phys, 147 (1998), 187-218.  doi: 10.1006/jcph.1998.6088.  Google Scholar

[2]

K. AmedodjiG. Bayada and M. Chambat, On the unsteady Navier-Stokes equations in a time-moving domain with velocity-pressure boundary conditions, Nonlinear Anal. TMA, 49 (2002), 565-587.  doi: 10.1016/S0362-546X(01)00123-7.  Google Scholar

[3]

G. Bayada and M. Chambat, New models in the theory of the hydrodynamic lubrication of rough surfaces, J. Tribol., 110 (1988), 402-407.   Google Scholar

[4]

N. BenhabouchaM. Chambat and I. Ciuperca, Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary, Quart. Appl. Math., 63 (2005), 369-400.  doi: 10.1090/S0033-569X-05-00963-3.  Google Scholar

[5]

J. M. Bernard, Time-dependent Stokes and Navier-Stokes problems with boundary conditions, Nonlinear Anal. RWA, 4 (2003), 805-839.  doi: 10.1016/S1468-1218(03)00016-6.  Google Scholar

[6]

D. BreschC. ChoquetL. ChupinT. Colin and M. Gisclon, Roughness-induced effect at main order on the Reynolds approximation, SIAM Multiscale Model. Simul., 8 (2010), 997-1017.  doi: 10.1137/090754996.  Google Scholar

[7]

S. ČanićA. MikelićD. Lamponi and J. Tambača, Self-consistent effective equations modeling the blood flow in medium-to-large compliant arteries, SIAM Multiscale Model. Simul., 3 (2005), 559-596.  doi: 10.1137/030602605.  Google Scholar

[8]

L. Chupin and S. Martin, Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., 44 (2012), 3041-3070.  doi: 10.1137/110824371.  Google Scholar

[9]

O. Damak and E. Hadj-Taieb, Waterhammer in flexible pipes, in Design and modeling of mechanical systems, Springer, 373-380, 2013. Google Scholar

[10]

D. Henry, Perturbation of the Boundary in Boundary-value Problems, London mathematical society lecture notes series, 318, Cambridge university press, 2005. doi: 10.1017/CBO9780511546730.  Google Scholar

[11]

Jäger and A. W. Mikelić, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Equations, 170 (2001), 96-122.  doi: 10.1006/jdeq.2000.3814.  Google Scholar

[12]

H. Le DretR. LewandowskiD. Priour and F. Changenau, Numerical simulations of a cod end net Part 1: equilibrium in a uniform flow, Elasticity J., 76 (2004), 139-162.  doi: 10.1007/s10659-004-6668-2.  Google Scholar

[13]

E. Marušić-Paloka, Effects of small boundary perturbation on flow of viscous fluid, ZAMM - J. Appl. Math. Mech., 96 (2016), 1103-1118.  doi: 10.1002/zamm.201500195.  Google Scholar

[14]

E. Marušić-PalokaI. Pažanin and M. Radulović, Flow of a micropolar fluid through a channel with small boundary perturbation, Z. Naturforsch. A, 71 (2016), 607-619.   Google Scholar

[15]

E. Marušić-Paloka and I. Pažanin, On the Darcy-Brinkman flow through a channel with slightly perturbed boundary, Transp. Porous. Med., 117 (2017), 27-44.  doi: 10.1007/s11242-016-0818-4.  Google Scholar

[16]

I. Pažanin, A note on the solute dispersion in a porous medium, B. Malays. Math. Sci. So., (2017).  doi: 10.1007/s40840-017-00508-6.  Google Scholar

[17]

I. Pažanin and F. J. Suárez-Grau, Analysis of the thin film flow in a rough thin domain filled with micropolar fluid, Comput. Math. Appl., 68 (2014), 1915-1932.  doi: 10.1016/j.camwa.2014.10.003.  Google Scholar

[18]

C. Peskin, Flow patterns around heart valves, J. Comput. Phys., 10 (1972), 252-271.   Google Scholar

[19]

G. D. RigbyL. StrezovC. D. RilleyS. D. ScifferJ. A. Lucas and G. M. Evans, Hydrodynamics of fluid flow approaching a moving bounday, Metall. Mater. Trans. B, 31 (2000), 1117-1123.   Google Scholar

[20]

A. Szeri, Fluid Film Lubrication, Cambridge university press, 2nd edition 2010. Google Scholar

[1]

Qiwei Wu, Liping Luan. Large-time behavior of solutions to unipolar Euler-Poisson equations with time-dependent damping. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021003

[2]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[3]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[4]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[5]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[6]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[7]

Wenrui Hao, King-Yeung Lam, Yuan Lou. Ecological and evolutionary dynamics in advective environments: Critical domain size and boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 367-400. doi: 10.3934/dcdsb.2020283

[8]

Xing-Bin Pan. Variational and operator methods for Maxwell-Stokes system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3909-3955. doi: 10.3934/dcds.2020036

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[11]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[12]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[13]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[14]

Imam Wijaya, Hirofumi Notsu. Stability estimates and a Lagrange-Galerkin scheme for a Navier-Stokes type model of flow in non-homogeneous porous media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1197-1212. doi: 10.3934/dcdss.2020234

[15]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[16]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021001

[17]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[18]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[19]

Mengting Fang, Yuanshi Wang, Mingshu Chen, Donald L. DeAngelis. Asymptotic population abundance of a two-patch system with asymmetric diffusion. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3411-3425. doi: 10.3934/dcds.2020031

[20]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (107)
  • HTML views (223)
  • Cited by (0)

Other articles
by authors

[Back to Top]