The aim of this paper is to investigate the effects of time-dependent boundary perturbation on the flow of a viscous fluid via asymptotic analysis. We start from a simple rectangular domain and then perturb the upper part of its boundary by the product of a small parameter $\varepsilon$ and some smooth function $h(x, t)$. The complete asymptotic expansion (in powers of $\varepsilon$) of the solution of the evolutionary Stokes system has been constructed. The convergence of the expansion has been proved providing the rigorous justification of the formally derived asymptotic model.
Citation: |
Y. Achdou
, O. Pironneau
and F. Valentin
, Effective boundary conditions for laminar flows over periodic rough boundaries, J. Computer. Phys, 147 (1998)
, 187-218.
doi: 10.1006/jcph.1998.6088.![]() ![]() ![]() |
|
K. Amedodji
, G. Bayada
and M. Chambat
, On the unsteady Navier-Stokes equations in a time-moving domain with velocity-pressure boundary conditions, Nonlinear Anal. TMA, 49 (2002)
, 565-587.
doi: 10.1016/S0362-546X(01)00123-7.![]() ![]() ![]() |
|
G. Bayada
and M. Chambat
, New models in the theory of the hydrodynamic lubrication of rough surfaces, J. Tribol., 110 (1988)
, 402-407.
![]() |
|
N. Benhaboucha
, M. Chambat
and I. Ciuperca
, Asymptotic behaviour of pressure and stresses in a thin film flow with a rough boundary, Quart. Appl. Math., 63 (2005)
, 369-400.
doi: 10.1090/S0033-569X-05-00963-3.![]() ![]() ![]() |
|
J. M. Bernard
, Time-dependent Stokes and Navier-Stokes problems with boundary conditions, Nonlinear Anal. RWA, 4 (2003)
, 805-839.
doi: 10.1016/S1468-1218(03)00016-6.![]() ![]() ![]() |
|
D. Bresch
, C. Choquet
, L. Chupin
, T. Colin
and M. Gisclon
, Roughness-induced effect at main order on the Reynolds approximation, SIAM Multiscale Model. Simul., 8 (2010)
, 997-1017.
doi: 10.1137/090754996.![]() ![]() ![]() |
|
S. Čanić
, A. Mikelić
, D. Lamponi
and J. Tambača
, Self-consistent effective equations modeling the blood flow in medium-to-large compliant arteries, SIAM Multiscale Model. Simul., 3 (2005)
, 559-596.
doi: 10.1137/030602605.![]() ![]() ![]() |
|
L. Chupin
and S. Martin
, Rigorous derivation of the thin film approximation with roughness-induced correctors, SIAM J. Math. Anal., 44 (2012)
, 3041-3070.
doi: 10.1137/110824371.![]() ![]() ![]() |
|
O. Damak and E. Hadj-Taieb, Waterhammer in flexible pipes, in Design and modeling of mechanical systems, Springer, 373-380, 2013.
![]() |
|
D. Henry, Perturbation of the Boundary in Boundary-value Problems, London mathematical society lecture notes series, 318, Cambridge university press, 2005.
doi: 10.1017/CBO9780511546730.![]() ![]() ![]() |
|
Jäger
and A. W. Mikelić
, On the roughness-induced effective boundary conditions for an incompressible viscous flow, J. Diff. Equations, 170 (2001)
, 96-122.
doi: 10.1006/jdeq.2000.3814.![]() ![]() ![]() |
|
H. Le Dret
, R. Lewandowski
, D. Priour
and F. Changenau
, Numerical simulations of a cod end net Part 1: equilibrium in a uniform flow, Elasticity J., 76 (2004)
, 139-162.
doi: 10.1007/s10659-004-6668-2.![]() ![]() ![]() |
|
E. Marušić-Paloka
, Effects of small boundary perturbation on flow of viscous fluid, ZAMM - J. Appl. Math. Mech., 96 (2016)
, 1103-1118.
doi: 10.1002/zamm.201500195.![]() ![]() ![]() |
|
E. Marušić-Paloka
, I. Pažanin
and M. Radulović
, Flow of a micropolar fluid through a channel with small boundary perturbation, Z. Naturforsch. A, 71 (2016)
, 607-619.
![]() |
|
E. Marušić-Paloka
and I. Pažanin
, On the Darcy-Brinkman flow through a channel with slightly perturbed boundary, Transp. Porous. Med., 117 (2017)
, 27-44.
doi: 10.1007/s11242-016-0818-4.![]() ![]() ![]() |
|
I. Pažanin
, A note on the solute dispersion in a porous medium, B. Malays. Math. Sci. So., (2017)
.
doi: 10.1007/s40840-017-00508-6.![]() ![]() |
|
I. Pažanin
and F. J. Suárez-Grau
, Analysis of the thin film flow in a rough thin domain filled with micropolar fluid, Comput. Math. Appl., 68 (2014)
, 1915-1932.
doi: 10.1016/j.camwa.2014.10.003.![]() ![]() ![]() |
|
C. Peskin
, Flow patterns around heart valves, J. Comput. Phys., 10 (1972)
, 252-271.
![]() |
|
G. D. Rigby
, L. Strezov
, C. D. Rilley
, S. D. Sciffer
, J. A. Lucas
and G. M. Evans
, Hydrodynamics of fluid flow approaching a moving bounday, Metall. Mater. Trans. B, 31 (2000)
, 1117-1123.
![]() |
|
A. Szeri, Fluid Film Lubrication, Cambridge university press, 2nd edition 2010.
![]() |