We study the symmetry of solutions to a class of Monge-Ampère type equations from a few geometric problems. We use a new transform to analyze the asymptotic behavior of the solutions near the infinity. By this and a moving plane method, we prove the radially symmetry of the solutions.
Citation: |
H. Berestycki and L. Nirenberg , Monotonicity, symmetry and anti-symmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988) , 237-275. doi: 10.1016/0393-0440(88)90006-X. | |
H. Berestycki and L. Nirenberg , On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991) , 1-37. doi: 10.1007/BF01244896. | |
E. Calabi , Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jorgens, Michigan Math. J., 5 (1958) , 105-126. | |
L. Caffarelli , B. Gidas and J. Spruck , Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. pure. Appl. Math., 42 (1989) , 271-297. doi: 10.1002/cpa.3160420304. | |
X. Chen and H. Y. Jian , The radial solutions of Monge-Ampère equations and the semi-geostrophic system, Adv. Nonlinear Stud., 5 (2005) , 587-600. doi: 10.1515/ans-2005-0407. | |
W. Chen and C. Li , Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991) , 615-622. doi: 10.1215/S0012-7094-91-06325-8. | |
L. Caffarelli , Y. Y. Li and L. Nirenberg , Some remarks on singular solutions of nonlinear elliptic equations. I, J. Fixed Point Theory Appl., 5 (2009) , 353-395. doi: 10.1007/s11784-009-0107-8. | |
S. Y. Cheng and S. T. Yau , On the regularity of the Monge-Ampere equation $\det ((\partial^2u/\partial x^ix^j)) = F(x,u)$, Comm. Pure Appl. Math., 30 (1977) , 41-68. doi: 10.1002/cpa.3160300104. | |
K. S. Chou and X. J. Wang , The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006) , 33-83. doi: 10.1016/j.aim.2005.07.004. | |
K. S. Chou and X. J. Wang , Minkowski problems for complete noncompact convex hypersurfaces, Topol. Methods Nonlinear Anal., 6 (1995) , 151-162. doi: 10.12775/TMNA.1995.037. | |
M. Dou , A direct method of moving planes for fractorial Laplacian equations in the unit ball, Comm. pure Appl. Anal., 15 (2016) , 1797-1807. doi: 10.3934/cpaa.2016015. | |
L. Damascelli , F. Pacella and M. Ramaswamy , Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Rat. Mech. Anal., 148 (1999) , 291-308. doi: 10.1007/s002050050163. | |
B. Franchi and E. Lanconelli, Radial symmetry of the ground states for a class of quasilinear elliptic equations, in Nonlinear Diffusion Equations and Their Equilibrium States (eds. W.-M. Ni, L. A. Peletier and James Serrin), Springer-Verlag, (1988), 287–292. doi: 10.1007/978-1-4613-9605-5_17. | |
B. Gidas , W.-M. Ni and L. Nirenberg , Symmetry and relatedproperties via the maximum principle, Commun. Math. Phys., 68 (1979) , 209-243. | |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1997. | |
K. Jorgens , Uber die Losunger der Differentialgeichung rt-s2 = 1, Math. Anna., 127 (1954) , 130-134. doi: 10.1007/BF01361114. | |
H. Y. Jian and Y. Li , Optimal boundary regularity for a Singular Monge-Ampère equation, Journal of Differential Equations, 264 (2018) , 6873-6890. doi: 10.1016/j.jde.2018.01.051. | |
H. Y. Jian , J. Lu and X.-J. Wang , Nonuniqueness of solutions to the LP-Minkowski problem, Adv. Math., 281 (2015) , 845-856. doi: 10.1016/j.aim.2015.05.010. | |
H. Y. Jian , J. Lu and X.-J. Wang , A priori estimates and existences of solutions to the prescribed centroaffine curvature problem, J. Funct. Anal., 274 (2018) , 826-862. doi: 10.1016/j.jfa.2017.08.024. | |
H. Y. Jian , J. Lu and G. Zhang , Mirror symmetric solutions to the cetro-affine Minkowski prblem, Calc. Var. Partial Differential Equations, 55 (2016) . doi: 10.1007/s00526-016-0976-9. | |
H. Y. Jian and X.-J. Wang , Bernstein theorem and regularity for a class of Monge-Ampère equation, J. Diff. Geom., 93 (2013) , 431-469. | |
H. Y. Jian and X.-J. Wang , Existence of entire solutions to the Monge-Ampère equation, Amer. J. Math., 136 (2014) , 1093-1106. doi: 10.1353/ajm.2014.0029. | |
H. Y. Jian , X.-J. Wang and Y. W. Zhao , Global smoothness for a singular Monge-Ampère equation, Journal of Differential Equations, 263 (2017) , 7250-7262. doi: 10.1016/j.jde.2017.08.004. | |
C. Li , Monotonocity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Commu. Partial Differ. Equations, 16 (1991) , 491-526. doi: 10.1080/03605309108820766. | |
Y. Li and W.-M. Ni , On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $R^n$ II. Radial symmetry, Arch. Rat. Mech. Anal., 118 (1992) , 223-243. doi: 10.1007/BF00387896. | |
Y. Li and W.-M. Ni , Radial symmetry of positive solutions of nonlinear elliptic equations in Rn, Comm. Part. Diff. Eqs., 189 (1993) , 104-397. doi: 10.1080/03605309308820960. | |
E. Lutwak , The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Diff. Geom., 38 (1993) , 131-150. | |
A. V. Pogorelov, The Minkowski Multidimensional Problem, J. Wiley, New York, 1978. | |
J. Serrin and H.-H. Zou , Symmetry of Ground states of quasilinear elliptic equations, Arch. Rat. Mech. Anal., 148 (1999) , 265-290. doi: 10.1007/s002050050162. | |
J. Urbas , Complete noncompact self-similar solutions of Gauss curvature flows I. Positive powers, Math. Ann., 311 (1998) , 251-274. doi: 10.1007/s002080050187. |