We study the symmetry of solutions to a class of Monge-Ampère type equations from a few geometric problems. We use a new transform to analyze the asymptotic behavior of the solutions near the infinity. By this and a moving plane method, we prove the radially symmetry of the solutions.
Citation: |
H. Berestycki
and L. Nirenberg
, Monotonicity, symmetry and anti-symmetry of solutions of semilinear elliptic equations, J. Geom. Phys., 5 (1988)
, 237-275.
doi: 10.1016/0393-0440(88)90006-X.![]() ![]() ![]() |
|
H. Berestycki
and L. Nirenberg
, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. (N.S.), 22 (1991)
, 1-37.
doi: 10.1007/BF01244896.![]() ![]() ![]() |
|
E. Calabi
, Improper affine hypersurfaces of convex type and a generalization of a theorem by K. Jorgens, Michigan Math. J., 5 (1958)
, 105-126.
![]() ![]() |
|
L. Caffarelli
, B. Gidas
and J. Spruck
, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. pure. Appl. Math., 42 (1989)
, 271-297.
doi: 10.1002/cpa.3160420304.![]() ![]() ![]() |
|
X. Chen
and H. Y. Jian
, The radial solutions of Monge-Ampère equations and the semi-geostrophic system, Adv. Nonlinear Stud., 5 (2005)
, 587-600.
doi: 10.1515/ans-2005-0407.![]() ![]() ![]() |
|
W. Chen
and C. Li
, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991)
, 615-622.
doi: 10.1215/S0012-7094-91-06325-8.![]() ![]() ![]() |
|
L. Caffarelli
, Y. Y. Li
and L. Nirenberg
, Some remarks on singular solutions of nonlinear elliptic equations. I, J. Fixed Point Theory Appl., 5 (2009)
, 353-395.
doi: 10.1007/s11784-009-0107-8.![]() ![]() ![]() |
|
S. Y. Cheng
and S. T. Yau
, On the regularity of the Monge-Ampere equation $\det ((\partial^2u/\partial x^ix^j)) = F(x,u)$, Comm. Pure Appl. Math., 30 (1977)
, 41-68.
doi: 10.1002/cpa.3160300104.![]() ![]() ![]() |
|
K. S. Chou
and X. J. Wang
, The Lp-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006)
, 33-83.
doi: 10.1016/j.aim.2005.07.004.![]() ![]() ![]() |
|
K. S. Chou
and X. J. Wang
, Minkowski problems for complete noncompact convex hypersurfaces, Topol. Methods Nonlinear Anal., 6 (1995)
, 151-162.
doi: 10.12775/TMNA.1995.037.![]() ![]() ![]() |
|
M. Dou
, A direct method of moving planes for fractorial Laplacian equations in the unit ball, Comm. pure Appl. Anal., 15 (2016)
, 1797-1807.
doi: 10.3934/cpaa.2016015.![]() ![]() ![]() |
|
L. Damascelli
, F. Pacella
and M. Ramaswamy
, Symmetry of ground states of p-Laplace equations via the moving plane method, Arch. Rat. Mech. Anal., 148 (1999)
, 291-308.
doi: 10.1007/s002050050163.![]() ![]() ![]() |
|
B. Franchi and E. Lanconelli, Radial symmetry of the ground states for a class of quasilinear elliptic equations, in Nonlinear Diffusion Equations and Their Equilibrium States (eds. W.-M. Ni, L. A. Peletier and James Serrin), Springer-Verlag, (1988), 287–292.
doi: 10.1007/978-1-4613-9605-5_17.![]() ![]() ![]() |
|
B. Gidas
, W.-M. Ni
and L. Nirenberg
, Symmetry and relatedproperties via the maximum principle, Commun. Math. Phys., 68 (1979)
, 209-243.
![]() ![]() |
|
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1997.
![]() ![]() |
|
K. Jorgens
, Uber die Losunger der Differentialgeichung rt-s2 = 1, Math. Anna., 127 (1954)
, 130-134.
doi: 10.1007/BF01361114.![]() ![]() ![]() |
|
H. Y. Jian
and Y. Li
, Optimal boundary regularity for a Singular Monge-Ampère equation, Journal of Differential Equations, 264 (2018)
, 6873-6890.
doi: 10.1016/j.jde.2018.01.051.![]() ![]() ![]() |
|
H. Y. Jian
, J. Lu
and X.-J. Wang
, Nonuniqueness of solutions to the LP-Minkowski problem, Adv. Math., 281 (2015)
, 845-856.
doi: 10.1016/j.aim.2015.05.010.![]() ![]() ![]() |
|
H. Y. Jian
, J. Lu
and X.-J. Wang
, A priori estimates and existences of solutions to the prescribed centroaffine curvature problem, J. Funct. Anal., 274 (2018)
, 826-862.
doi: 10.1016/j.jfa.2017.08.024.![]() ![]() ![]() |
|
H. Y. Jian
, J. Lu
and G. Zhang
, Mirror symmetric solutions to the cetro-affine Minkowski prblem, Calc. Var. Partial Differential Equations, 55 (2016)
.
doi: 10.1007/s00526-016-0976-9.![]() ![]() ![]() |
|
H. Y. Jian
and X.-J. Wang
, Bernstein theorem and regularity for a class of Monge-Ampère equation, J. Diff. Geom., 93 (2013)
, 431-469.
![]() ![]() |
|
H. Y. Jian
and X.-J. Wang
, Existence of entire solutions to the Monge-Ampère equation, Amer. J. Math., 136 (2014)
, 1093-1106.
doi: 10.1353/ajm.2014.0029.![]() ![]() ![]() |
|
H. Y. Jian
, X.-J. Wang
and Y. W. Zhao
, Global smoothness for a singular Monge-Ampère equation, Journal of Differential Equations, 263 (2017)
, 7250-7262.
doi: 10.1016/j.jde.2017.08.004.![]() ![]() ![]() |
|
C. Li
, Monotonocity and symmetry of solutions of fully nonlinear elliptic equations on unbounded domains, Commu. Partial Differ. Equations, 16 (1991)
, 491-526.
doi: 10.1080/03605309108820766.![]() ![]() ![]() |
|
Y. Li
and W.-M. Ni
, On the asymptotic behavior and radial symmetry of positive solutions of semilinear elliptic equations in $R^n$ II. Radial symmetry, Arch. Rat. Mech. Anal., 118 (1992)
, 223-243.
doi: 10.1007/BF00387896.![]() ![]() ![]() |
|
Y. Li
and W.-M. Ni
, Radial symmetry of positive solutions of nonlinear elliptic equations in Rn, Comm. Part. Diff. Eqs., 189 (1993)
, 104-397.
doi: 10.1080/03605309308820960.![]() ![]() ![]() |
|
E. Lutwak
, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Diff. Geom., 38 (1993)
, 131-150.
![]() ![]() |
|
A. V. Pogorelov, The Minkowski Multidimensional Problem, J. Wiley, New York, 1978.
![]() ![]() |
|
J. Serrin
and H.-H. Zou
, Symmetry of Ground states of quasilinear elliptic equations, Arch. Rat. Mech. Anal., 148 (1999)
, 265-290.
doi: 10.1007/s002050050162.![]() ![]() ![]() |
|
J. Urbas
, Complete noncompact self-similar solutions of Gauss curvature flows I. Positive powers, Math. Ann., 311 (1998)
, 251-274.
doi: 10.1007/s002080050187.![]() ![]() ![]() |