May  2019, 18(3): 1261-1280. doi: 10.3934/cpaa.2019061

Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials

1. 

School of Mathematics and Statistics, Central South University, Changsha, 410083 Hunan, China

2. 

School of Traffic and Transportation Engineering, Central South University, Changsha, 410075 Hunan, China

* Corresponding author

Received  May 2018 Revised  September 2018 Published  November 2018

Fund Project: This work is partially supported by the National Natural Science Foundation of China (Nos.: 11801574, 11571370, 11501190) of China.

In this paper we study a class of weakly coupled Schrödinger system arising in several branches of sciences, such as nonlinear optics and Bose-Einstein condensates. Instead of the well known super-quadratic condition that $\lim_{|z|\to∞}\frac{F(x,z)}{|z|^2} = ∞$ uniformly in $x$, we introduce a new local super-quadratic condition that allows the nonlinearity $F$ to be super-quadratic at some $x∈ \mathbb{R}^N$ and asymptotically quadratic at other $x∈ \mathbb{R}^N$. Employing some analytical skills and using the variational method, we prove some results about the existence of ground states for the system with periodic or non-periodic potentials. In particular, any nontrivial solutions are continuous and decay to zero exponentially as $|x| \to ∞$. Our main results extend and improve some recent ones in the literature.

Citation: Dongdong Qin, Xianhua Tang, Qingfang Wu. Ground states of nonlinear Schrödinger systems with periodic or non-periodic potentials. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1261-1280. doi: 10.3934/cpaa.2019061
References:
[1]

A. AmbrosettiG. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $ \mathbb{R}^N$, J. Funct. Anal., 254 (2008), 2816-2845.  doi: 10.1016/j.jfa.2007.11.013.

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. 

[3]

T. BartschA. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.  doi: 10.1142/S0219199701000494.

[4]

T. Bartsch, Z.-Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations, in Handbook of Differential Equations-Stationary Partial Differential Equations (eds. M. Chipot and P. Quittner), vol. 2, Elsevier, 2005, pp. 1-5 (Chapter 1).

[5]

H. Brezis and E. H. Lieb, Minimum action solutions of some vector field equations, Commun. Math. Phys., 96 (1984), 97-113. 

[6]

G. W. Chen and S. W. Ma, Asymptotically or super linear cooperative elliptic systems in the whole space, Sci. China Math., 56 (2013), 1181-1194.  doi: 10.1007/s11425-013-4567-3.

[7]

G. W. Chen and S. W. Ma, Infinitely many solutions for resonant cooperative elliptic systems with sublinear or superlinear terms, Calc. Var., 49 (2014), 271-286.  doi: 10.1007/s00526-012-0581-5.

[8]

G. W. Chen and S. W. Ma, Nonexistence and multiplicity of solutions for nonlinear elliptic systems of $ \mathbb{R}^N$, Nonlinear Anal.-Real World Appl., 36 (2017), 233-248.  doi: 10.1016/j.nonrwa.2017.01.012.

[9]

R. Cipolatti and W. Zumpichiatti, On the existence and regularity of ground states for a nonlinear system of coupled Schrödinger equations in $ \mathbb{R}^N$, Comput. Appl. Math., 18 (1999), 15-29. 

[10]

D. G. Costa, On a Class of Elliptic Systems in $ \mathbb{R}^N$, Electron. J. Differential Equations, 7 (1994), 1-14. 

[11]

D. G. Costa and C. A. Magalhães, A variational approach to subquadratic perturbations of elliptic systems, J. Differential Equations, 111 (1994), 103-122.  doi: 10.1006/jdeq.1994.1077.

[12]

Y. H. Ding, Varitional Methods for Strongly Indefinite Problems, World Scientific, Singapore, 2008. doi: 10.1142/9789812709639.

[13]

Y. H. Ding and C. Lee, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222 (2006), 137-163.  doi: 10.1016/j.jde.2005.03.011.

[14]

D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.

[15]

Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996. doi: 10.1007/978-3-0348-9029-8.

[16]

B. D. EsryC. H. GreeneJ. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597. 

[17]

A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Oxford University Press, Oxford, 1995. doi: 10.1007/BF00994627.

[18]

M. N. Islam, Ultrafast Fiber Switching Devices and Systems, Cambridge University Press, New York, 1992.

[19]

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equations, Adv. Differential Equations, 3 (1998), 441-472. 

[20]

G. Li and A. Szulkin, An asymptotically periodic equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.  doi: 10.1142/S0219199702000853.

[21]

L. Li and C-L. Tang, Infinitely many solutions for resonance elliptic systems, C. R. Acad. Sci. Paris, Ser. I, 353 (2015), 35-40.  doi: 10.1016/j.crma.2014.10.010.

[22]

Z. L. Liu and Z-Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 561-572.  doi: 10.1515/ans-2004-0411.

[23]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application, J. Differential Equations, 245 (2008), 2551-2565.  doi: 10.1016/j.jde.2008.04.008.

[24]

L. A. MaiaE. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229 (2006), 743-767.  doi: 10.1016/j.jde.2006.07.002.

[25]

S. W. Ma, Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups, Nonlinear Anal., 73 (2010), 3856-3872.  doi: 10.1016/j.na.2010.08.013.

[26]

J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Commun. Partial Differ. Equ., 41 (2016), 1426-1440.  doi: 10.1080/03605302.2016.1209520.

[27]

C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quant. Electron, 23 (1987), 174-176. 

[28]

A. M. Molchanov, On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order, Trudy Mosk. Matem. Obshchestva, 2 (1953), 169-199 (in Russian).

[29]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.

[30]

A. Pankov, On decay of solutions to nolinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2565-2570.  doi: 10.1090/S0002-9939-08-09484-7.

[31]

D. D. Qin and X. H. Tang, Solutions on asymptotically periodic elliptic system with new conditions, Results. Math., 70 (2016), 539-565.  doi: 10.1007/s00025-015-0491-x.

[32]

D. D. QinY. B. He and X. H. Tang, Ground and bound states for non-linear Schrödinger systems with indefinite linear terms, Complex Var. Elliptic Equ., 62 (2017), 1758-1781.  doi: 10.1080/17476933.2017.1281256.

[33]

D. D. QinJ. Chen and X. H. Tang, Existence and non-existence of nontrivial solutions for Schrödinger systems via Nehari-Pohozaev manifold, Comput. Math. Appl., 74 (2017), 3141-3160.  doi: 10.1016/j.camwa.2017.08.010.

[34]

Q. F. Wu and D. D. Qin, Ground and bound states of periodic Schrödinger equations with super or asymptotically linear terms, Electronic Journal of Differential Equations, 25 (2018), 1-26. 

[35]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[36]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. Ⅳ, Analysis of Operators, Academic Press, New York, 1978.

[37]

M. Schechter and B. Simon, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl., 77 (1980), 482-492.  doi: 10.1016/0022-247X(80)90242-5.

[38]

M. Schechter and W. M. Zou, Weak linking theorems and Schrödinger equations with critical Soblev exponent, ESAIM Contral Optim. Calc. Var., 9 (2003), 601-619 (electronic).  doi: 10.1051/cocv:2003029.

[39]

B. Simon, Schrödinger semigroup, Bull. Amer. Math. Soc., 7 (1982), 447-526.  doi: 10.1090/S0273-0979-1982-15041-8.

[40]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.

[41]

X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58 (2015), 715-728.  doi: 10.1007/s11425-014-4957-1.

[42]

X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ., (2018), DOI: 10.1007/s10884-018-9662-2.

[43]

E. Timmermans, Phase seperation of Bose Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721. 

[44]

J. Vélin and F. de Thélin, Existence and non-existence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Complutense Madrid, 6 (1993), 153-154. 

[45]

J. C. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011.  doi: 10.3934/cpaa.2012.11.1003.

[46]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

show all references

References:
[1]

A. AmbrosettiG. Cerami and D. Ruiz, Solitons of linearly coupled systems of semilinear non-autonomous equations on $ \mathbb{R}^N$, J. Funct. Anal., 254 (2008), 2816-2845.  doi: 10.1016/j.jfa.2007.11.013.

[2]

A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. 

[3]

T. BartschA. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001), 549-569.  doi: 10.1142/S0219199701000494.

[4]

T. Bartsch, Z.-Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations, in Handbook of Differential Equations-Stationary Partial Differential Equations (eds. M. Chipot and P. Quittner), vol. 2, Elsevier, 2005, pp. 1-5 (Chapter 1).

[5]

H. Brezis and E. H. Lieb, Minimum action solutions of some vector field equations, Commun. Math. Phys., 96 (1984), 97-113. 

[6]

G. W. Chen and S. W. Ma, Asymptotically or super linear cooperative elliptic systems in the whole space, Sci. China Math., 56 (2013), 1181-1194.  doi: 10.1007/s11425-013-4567-3.

[7]

G. W. Chen and S. W. Ma, Infinitely many solutions for resonant cooperative elliptic systems with sublinear or superlinear terms, Calc. Var., 49 (2014), 271-286.  doi: 10.1007/s00526-012-0581-5.

[8]

G. W. Chen and S. W. Ma, Nonexistence and multiplicity of solutions for nonlinear elliptic systems of $ \mathbb{R}^N$, Nonlinear Anal.-Real World Appl., 36 (2017), 233-248.  doi: 10.1016/j.nonrwa.2017.01.012.

[9]

R. Cipolatti and W. Zumpichiatti, On the existence and regularity of ground states for a nonlinear system of coupled Schrödinger equations in $ \mathbb{R}^N$, Comput. Appl. Math., 18 (1999), 15-29. 

[10]

D. G. Costa, On a Class of Elliptic Systems in $ \mathbb{R}^N$, Electron. J. Differential Equations, 7 (1994), 1-14. 

[11]

D. G. Costa and C. A. Magalhães, A variational approach to subquadratic perturbations of elliptic systems, J. Differential Equations, 111 (1994), 103-122.  doi: 10.1006/jdeq.1994.1077.

[12]

Y. H. Ding, Varitional Methods for Strongly Indefinite Problems, World Scientific, Singapore, 2008. doi: 10.1142/9789812709639.

[13]

Y. H. Ding and C. Lee, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222 (2006), 137-163.  doi: 10.1016/j.jde.2005.03.011.

[14]

D. E. Edmunds and W. D. Evans, Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.

[15]

Y. Egorov and V. Kondratiev, On Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996. doi: 10.1007/978-3-0348-9029-8.

[16]

B. D. EsryC. H. GreeneJ. P. Burke Jr and J. L. Bohn, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997), 3594-3597. 

[17]

A. Hasegawa and Y. Kodama, Solitons in Optical Communications, Oxford University Press, Oxford, 1995. doi: 10.1007/BF00994627.

[18]

M. N. Islam, Ultrafast Fiber Switching Devices and Systems, Cambridge University Press, New York, 1992.

[19]

W. Kryszewski and A. Szulkin, Generalized linking theorem with an application to a semilinear Schrödinger equations, Adv. Differential Equations, 3 (1998), 441-472. 

[20]

G. Li and A. Szulkin, An asymptotically periodic equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763-776.  doi: 10.1142/S0219199702000853.

[21]

L. Li and C-L. Tang, Infinitely many solutions for resonance elliptic systems, C. R. Acad. Sci. Paris, Ser. I, 353 (2015), 35-40.  doi: 10.1016/j.crma.2014.10.010.

[22]

Z. L. Liu and Z-Q. Wang, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004), 561-572.  doi: 10.1515/ans-2004-0411.

[23]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application, J. Differential Equations, 245 (2008), 2551-2565.  doi: 10.1016/j.jde.2008.04.008.

[24]

L. A. MaiaE. Montefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229 (2006), 743-767.  doi: 10.1016/j.jde.2006.07.002.

[25]

S. W. Ma, Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups, Nonlinear Anal., 73 (2010), 3856-3872.  doi: 10.1016/j.na.2010.08.013.

[26]

J. Mederski, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Commun. Partial Differ. Equ., 41 (2016), 1426-1440.  doi: 10.1080/03605302.2016.1209520.

[27]

C. R. Menyuk, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quant. Electron, 23 (1987), 174-176. 

[28]

A. M. Molchanov, On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order, Trudy Mosk. Matem. Obshchestva, 2 (1953), 169-199 (in Russian).

[29]

A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), 259-287.  doi: 10.1007/s00032-005-0047-8.

[30]

A. Pankov, On decay of solutions to nolinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008), 2565-2570.  doi: 10.1090/S0002-9939-08-09484-7.

[31]

D. D. Qin and X. H. Tang, Solutions on asymptotically periodic elliptic system with new conditions, Results. Math., 70 (2016), 539-565.  doi: 10.1007/s00025-015-0491-x.

[32]

D. D. QinY. B. He and X. H. Tang, Ground and bound states for non-linear Schrödinger systems with indefinite linear terms, Complex Var. Elliptic Equ., 62 (2017), 1758-1781.  doi: 10.1080/17476933.2017.1281256.

[33]

D. D. QinJ. Chen and X. H. Tang, Existence and non-existence of nontrivial solutions for Schrödinger systems via Nehari-Pohozaev manifold, Comput. Math. Appl., 74 (2017), 3141-3160.  doi: 10.1016/j.camwa.2017.08.010.

[34]

Q. F. Wu and D. D. Qin, Ground and bound states of periodic Schrödinger equations with super or asymptotically linear terms, Electronic Journal of Differential Equations, 25 (2018), 1-26. 

[35]

P. H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992), 270-291.  doi: 10.1007/BF00946631.

[36]

M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. Ⅳ, Analysis of Operators, Academic Press, New York, 1978.

[37]

M. Schechter and B. Simon, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl., 77 (1980), 482-492.  doi: 10.1016/0022-247X(80)90242-5.

[38]

M. Schechter and W. M. Zou, Weak linking theorems and Schrödinger equations with critical Soblev exponent, ESAIM Contral Optim. Calc. Var., 9 (2003), 601-619 (electronic).  doi: 10.1051/cocv:2003029.

[39]

B. Simon, Schrödinger semigroup, Bull. Amer. Math. Soc., 7 (1982), 447-526.  doi: 10.1090/S0273-0979-1982-15041-8.

[40]

A. Szulkin and T. Weth, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009), 3802-3822.  doi: 10.1016/j.jfa.2009.09.013.

[41]

X. H. Tang, Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58 (2015), 715-728.  doi: 10.1007/s11425-014-4957-1.

[42]

X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ., (2018), DOI: 10.1007/s10884-018-9662-2.

[43]

E. Timmermans, Phase seperation of Bose Einstein condensates, Phys. Rev. Lett., 81 (1998), 5718-5721. 

[44]

J. Vélin and F. de Thélin, Existence and non-existence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Complutense Madrid, 6 (1993), 153-154. 

[45]

J. C. Wei and W. Yao, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012), 1003-1011.  doi: 10.3934/cpaa.2012.11.1003.

[46]

M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996. doi: 10.1007/978-1-4612-4146-1.

[1]

Qinqin Zhang. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Communications on Pure and Applied Analysis, 2019, 18 (1) : 425-434. doi: 10.3934/cpaa.2019021

[2]

Chuangye Liu, Zhi-Qiang Wang. A complete classification of ground-states for a coupled nonlinear Schrödinger system. Communications on Pure and Applied Analysis, 2017, 16 (1) : 115-130. doi: 10.3934/cpaa.2017005

[3]

Peng Chen, Xianhua Tang. Ground states for a system of nonlinear Schrödinger equations with singular potentials. Discrete and Continuous Dynamical Systems, 2022, 42 (10) : 5105-5136. doi: 10.3934/dcds.2022088

[4]

Rong Cheng, Jun Wang. Existence of ground states for Schrödinger-Poisson system with nonperiodic potentials. Discrete and Continuous Dynamical Systems - B, 2022, 27 (11) : 6295-6321. doi: 10.3934/dcdsb.2021317

[5]

Alireza Khatib, Liliane A. Maia. A positive bound state for an asymptotically linear or superlinear Schrödinger equation in exterior domains. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2789-2812. doi: 10.3934/cpaa.2018132

[6]

Xiaoyan Lin, Yubo He, Xianhua Tang. Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1547-1565. doi: 10.3934/cpaa.2019074

[7]

Wen Feng, Milena Stanislavova, Atanas Stefanov. On the spectral stability of ground states of semi-linear Schrödinger and Klein-Gordon equations with fractional dispersion. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1371-1385. doi: 10.3934/cpaa.2018067

[8]

Giuseppe Maria Coclite, Helge Holden. Ground states of the Schrödinger-Maxwell system with dirac mass: Existence and asymptotics. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 117-132. doi: 10.3934/dcds.2010.27.117

[9]

Alain Bensoussan, Jens Frehse. On diagonal elliptic and parabolic systems with super-quadratic Hamiltonians. Communications on Pure and Applied Analysis, 2009, 8 (1) : 83-94. doi: 10.3934/cpaa.2009.8.83

[10]

Xiangjin Xu. Multiple solutions of super-quadratic second order dynamical systems. Conference Publications, 2003, 2003 (Special) : 926-934. doi: 10.3934/proc.2003.2003.926

[11]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[12]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure and Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[13]

Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136

[14]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[15]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[16]

Chang-Lin Xiang. Remarks on nondegeneracy of ground states for quasilinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5789-5800. doi: 10.3934/dcds.2016054

[17]

Alex H. Ardila. Stability of ground states for logarithmic Schrödinger equation with a $δ^{\prime}$-interaction. Evolution Equations and Control Theory, 2017, 6 (2) : 155-175. doi: 10.3934/eect.2017009

[18]

Scipio Cuccagna. Orbitally but not asymptotically stable ground states for the discrete NLS. Discrete and Continuous Dynamical Systems, 2010, 26 (1) : 105-134. doi: 10.3934/dcds.2010.26.105

[19]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[20]

Addolorata Salvatore. Sign--changing solutions for an asymptotically linear Schrödinger equation. Conference Publications, 2009, 2009 (Special) : 669-677. doi: 10.3934/proc.2009.2009.669

2021 Impact Factor: 1.273

Metrics

  • PDF downloads (327)
  • HTML views (281)
  • Cited by (4)

Other articles
by authors

[Back to Top]