In this paper we study a class of weakly coupled Schrödinger system arising in several branches of sciences, such as nonlinear optics and Bose-Einstein condensates. Instead of the well known super-quadratic condition that $\lim_{|z|\to∞}\frac{F(x,z)}{|z|^2} = ∞$ uniformly in $x$, we introduce a new local super-quadratic condition that allows the nonlinearity $F$ to be super-quadratic at some $x∈ \mathbb{R}^N$ and asymptotically quadratic at other $x∈ \mathbb{R}^N$. Employing some analytical skills and using the variational method, we prove some results about the existence of ground states for the system with periodic or non-periodic potentials. In particular, any nontrivial solutions are continuous and decay to zero exponentially as $|x| \to ∞$. Our main results extend and improve some recent ones in the literature.
Citation: |
A. Ambrosetti
, G. Cerami
and D. Ruiz
, Solitons of linearly coupled systems of semilinear non-autonomous equations on $ \mathbb{R}^N$, J. Funct. Anal., 254 (2008)
, 2816-2845.
doi: 10.1016/j.jfa.2007.11.013.![]() ![]() ![]() |
|
A. Ambrosetti
and P. H. Rabinowitz
, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973)
, 349-381.
![]() ![]() |
|
T. Bartsch
, A. Pankov
and Z.-Q. Wang
, Nonlinear Schrödinger equations with steep potential well, Commun. Contemp. Math., 3 (2001)
, 549-569.
doi: 10.1142/S0219199701000494.![]() ![]() ![]() |
|
T. Bartsch, Z.-Q. Wang and M. Willem, The Dirichlet problem for superlinear elliptic equations, in Handbook of Differential Equations-Stationary Partial Differential Equations (eds. M. Chipot and P. Quittner), vol. 2, Elsevier, 2005, pp. 1-5 (Chapter 1).
![]() ![]() |
|
H. Brezis
and E. H. Lieb
, Minimum action solutions of some vector field equations, Commun. Math. Phys., 96 (1984)
, 97-113.
![]() ![]() |
|
G. W. Chen
and S. W. Ma
, Asymptotically or super linear cooperative elliptic systems in the whole space, Sci. China Math., 56 (2013)
, 1181-1194.
doi: 10.1007/s11425-013-4567-3.![]() ![]() ![]() |
|
G. W. Chen
and S. W. Ma
, Infinitely many solutions for resonant cooperative elliptic systems with sublinear or superlinear terms, Calc. Var., 49 (2014)
, 271-286.
doi: 10.1007/s00526-012-0581-5.![]() ![]() ![]() |
|
G. W. Chen
and S. W. Ma
, Nonexistence and multiplicity of solutions for nonlinear elliptic systems of $ \mathbb{R}^N$, Nonlinear Anal.-Real World Appl., 36 (2017)
, 233-248.
doi: 10.1016/j.nonrwa.2017.01.012.![]() ![]() ![]() |
|
R. Cipolatti
and W. Zumpichiatti
, On the existence and regularity of ground states for a nonlinear system of coupled Schrödinger equations in $ \mathbb{R}^N$, Comput. Appl. Math., 18 (1999)
, 15-29.
![]() ![]() |
|
D. G. Costa
, On a Class of Elliptic Systems in $ \mathbb{R}^N$, Electron. J. Differential Equations, 7 (1994)
, 1-14.
![]() ![]() |
|
D. G. Costa
and C. A. Magalhães
, A variational approach to subquadratic perturbations of elliptic systems, J. Differential Equations, 111 (1994)
, 103-122.
doi: 10.1006/jdeq.1994.1077.![]() ![]() ![]() |
|
Y. H. Ding,
Varitional Methods for Strongly Indefinite Problems, World Scientific, Singapore, 2008.
doi: 10.1142/9789812709639.![]() ![]() ![]() |
|
Y. H. Ding
and C. Lee
, Multiple solutions of Schrödinger equations with indefinite linear part and super or asymptotically linear terms, J. Differential Equations, 222 (2006)
, 137-163.
doi: 10.1016/j.jde.2005.03.011.![]() ![]() ![]() |
|
D. E. Edmunds and W. D. Evans,
Spectral Theory and Differential Operators, Clarendon Press, Oxford, 1987.
![]() ![]() |
|
Y. Egorov and V. Kondratiev,
On Spectral Theory of Elliptic Operators, Birkhäuser, Basel, 1996.
doi: 10.1007/978-3-0348-9029-8.![]() ![]() ![]() |
|
B. D. Esry
, C. H. Greene
, J. P. Burke Jr
and J. L. Bohn
, Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78 (1997)
, 3594-3597.
![]() |
|
A. Hasegawa and Y. Kodama,
Solitons in Optical Communications, Oxford University Press, Oxford, 1995.
doi: 10.1007/BF00994627.![]() ![]() ![]() |
|
M. N. Islam,
Ultrafast Fiber Switching Devices and Systems, Cambridge University Press, New York, 1992.
![]() |
|
W. Kryszewski
and A. Szulkin
, Generalized linking theorem with an application to a semilinear Schrödinger equations, Adv. Differential Equations, 3 (1998)
, 441-472.
![]() |
|
G. Li
and A. Szulkin
, An asymptotically periodic equation with indefinite linear part, Commun. Contemp. Math., 4 (2002)
, 763-776.
doi: 10.1142/S0219199702000853.![]() ![]() ![]() |
|
L. Li
and C-L. Tang
, Infinitely many solutions for resonance elliptic systems, C. R. Acad. Sci. Paris, Ser. I, 353 (2015)
, 35-40.
doi: 10.1016/j.crma.2014.10.010.![]() ![]() ![]() |
|
Z. L. Liu
and Z-Q. Wang
, On the Ambrosetti-Rabinowitz superlinear condition, Adv. Nonlinear Stud., 4 (2004)
, 561-572.
doi: 10.1515/ans-2004-0411.![]() ![]() ![]() |
|
L. Ma
and L. Zhao
, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application, J. Differential Equations, 245 (2008)
, 2551-2565.
doi: 10.1016/j.jde.2008.04.008.![]() ![]() ![]() |
|
L. A. Maia
, E. Montefusco
and B. Pellacci
, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differential Equations, 229 (2006)
, 743-767.
doi: 10.1016/j.jde.2006.07.002.![]() ![]() ![]() |
|
S. W. Ma
, Nontrivial solutions for resonant cooperative elliptic systems via computations of the critical groups, Nonlinear Anal., 73 (2010)
, 3856-3872.
doi: 10.1016/j.na.2010.08.013.![]() ![]() ![]() |
|
J. Mederski
, Ground states of a system of nonlinear Schrödinger equations with periodic potentials, Commun. Partial Differ. Equ., 41 (2016)
, 1426-1440.
doi: 10.1080/03605302.2016.1209520.![]() ![]() ![]() |
|
C. R. Menyuk
, Nonlinear pulse propagation in birefringent optical fibers, IEEE J. Quant. Electron, 23 (1987)
, 174-176.
![]() |
|
A. M. Molchanov, On the discreteness of the spectrum conditions for self-adjoint differential equations of the second order, Trudy Mosk. Matem. Obshchestva, 2 (1953), 169-199 (in Russian).
![]() ![]() |
|
A. Pankov
, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005)
, 259-287.
doi: 10.1007/s00032-005-0047-8.![]() ![]() ![]() |
|
A. Pankov
, On decay of solutions to nolinear Schrödinger equations, Proc. Amer. Math. Soc., 136 (2008)
, 2565-2570.
doi: 10.1090/S0002-9939-08-09484-7.![]() ![]() ![]() |
|
D. D. Qin
and X. H. Tang
, Solutions on asymptotically periodic elliptic system with new conditions, Results. Math., 70 (2016)
, 539-565.
doi: 10.1007/s00025-015-0491-x.![]() ![]() ![]() |
|
D. D. Qin
, Y. B. He
and X. H. Tang
, Ground and bound states for non-linear Schrödinger systems with indefinite linear terms, Complex Var. Elliptic Equ., 62 (2017)
, 1758-1781.
doi: 10.1080/17476933.2017.1281256.![]() ![]() ![]() |
|
D. D. Qin
, J. Chen
and X. H. Tang
, Existence and non-existence of nontrivial solutions for Schrödinger systems via Nehari-Pohozaev manifold, Comput. Math. Appl., 74 (2017)
, 3141-3160.
doi: 10.1016/j.camwa.2017.08.010.![]() ![]() ![]() |
|
Q. F. Wu
and D. D. Qin
, Ground and bound states of periodic Schrödinger equations with super or asymptotically linear terms, Electronic Journal of Differential Equations, 25 (2018)
, 1-26.
![]() ![]() |
|
P. H. Rabinowitz
, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys., 43 (1992)
, 270-291.
doi: 10.1007/BF00946631.![]() ![]() ![]() |
|
M. Reed and B. Simon,
Methods of Modern Mathematical Physics, Vol. Ⅳ, Analysis of Operators, Academic Press, New York, 1978.
![]() ![]() |
|
M. Schechter
and B. Simon
, Unique continuation for Schrödinger operators with unbounded potentials, J. Math. Anal. Appl., 77 (1980)
, 482-492.
doi: 10.1016/0022-247X(80)90242-5.![]() ![]() ![]() |
|
M. Schechter
and W. M. Zou
, Weak linking theorems and Schrödinger equations with critical Soblev exponent, ESAIM Contral Optim. Calc. Var., 9 (2003)
, 601-619 (electronic).
doi: 10.1051/cocv:2003029.![]() ![]() ![]() |
|
B. Simon
, Schrödinger semigroup, Bull. Amer. Math. Soc., 7 (1982)
, 447-526.
doi: 10.1090/S0273-0979-1982-15041-8.![]() ![]() ![]() |
|
A. Szulkin
and T. Weth
, Ground state solutions for some indefinite variational problems, J. Funct. Anal., 257 (2009)
, 3802-3822.
doi: 10.1016/j.jfa.2009.09.013.![]() ![]() ![]() |
|
X. H. Tang
, Non-Nehari manifold method for asymptotically periodic Schrödinger equation, Sci. China Math., 58 (2015)
, 715-728.
doi: 10.1007/s11425-014-4957-1.![]() ![]() ![]() |
|
X. H. Tang, X. Y. Lin and J. S. Yu, Nontrivial solutions for Schrödinger equation with local super-quadratic conditions, J. Dyn. Differ. Equ., (2018), DOI: 10.1007/s10884-018-9662-2.
![]() |
|
E. Timmermans
, Phase seperation of Bose Einstein condensates, Phys. Rev. Lett., 81 (1998)
, 5718-5721.
![]() |
|
J. Vélin
and F. de Thélin
, Existence and non-existence of nontrivial solutions for some nonlinear elliptic systems, Rev. Mat. Univ. Complutense Madrid, 6 (1993)
, 153-154.
![]() ![]() |
|
J. C. Wei
and W. Yao
, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations, Commun. Pure Appl. Anal., 11 (2012)
, 1003-1011.
doi: 10.3934/cpaa.2012.11.1003.![]() ![]() ![]() |
|
M. Willem, Minimax Theorems, Birkhäuser, Boston, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |