May  2019, 18(3): 1281-1302. doi: 10.3934/cpaa.2019062

Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems

Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China

* Corresponding author: Jie Liao

Received  May 2018 Revised  August 2018 Published  November 2018

Fund Project: The research is partially supported by NSFC grants 11671134 and 11871335.

In the paper, we consider a three-dimensional bipolar hydrodynamic model from semiconductor devices and plasmas. This system takes the form of Euler-Poisson with electric field and relaxation term added to the momentum equations. We first construct the planar diffusion waves. Next we show the global existence of smooth solutions for the initial value problem of three-dimensional bipolar Euler-Poisson systems when the initial data are near the planar diffusive waves. Finally, we also establish the $ L^p(p∈[2,+∞])$ convergence rates of the solutions toward the planar diffusion waves. A frequency decomposition, approximate Green function and delicate energy method are used to prove our results.

Citation: Yeping Li, Jie Liao. Stability and $ L^{p}$ convergence rates of planar diffusion waves for three-dimensional bipolar Euler-Poisson systems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1281-1302. doi: 10.3934/cpaa.2019062
References:
[1]

G. Ali and A. Jüngel, Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma, J. Differential Equations, 190 (2003), 663-685.  doi: 10.1016/S0022-0396(02)00157-2.  Google Scholar

[2]

G. Ali and L. Chen, The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data, Nonlinearity, 24 (2011), 2745-2761.  doi: 10.1088/0951-7715/24/10/005.  Google Scholar

[3]

D. DonatelliM. MeiB. Rubino and R. Sampalmieri, Asymptotic behavior of solutions to Euler-Poisson equations for bipolar hydrodynamic model of semiconductors, J. Differential Equations, 255 (2013), 3150-3184.  doi: 10.1016/j.jde.2013.07.027.  Google Scholar

[4]

I. GasserL. Hsiao and H.-L. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differential Equations, 192 (2003), 326-359.  doi: 10.1016/S0022-0396(03)00122-0.  Google Scholar

[5]

I. Gasser and P. Marcati, The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors, Math. Meth. Appl. Sci., 24 (2001), 81-92.  doi: 10.1002/1099-1476(20010125)24:2<81::AID-MMA198>3.3.CO;2-O.  Google Scholar

[6]

F.-M. Huang and Y.-P. Li, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum, Dis. Contin. Dyn. Sys., A24 (2009), 455-470.  doi: 10.3934/dcds.2009.24.455.  Google Scholar

[7]

F.-M. HuangM. Mei and Y. Wang, Large time behavior of solution to n-dimensional bipolar hydrodynamic model for semiconductors, SIAM J. Math. Anal., 43 (2011), 1595-1630.  doi: 10.1137/100810228.  Google Scholar

[8]

F.-M. HuangM. MeiY. Wang and T. Yang, Large-time behavior of solution to the bipolar hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., 44 (2012), 1134-1164.  doi: 10.1137/110831647.  Google Scholar

[9]

L. Hsiao and K.-J. Zhang, The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci., 10 (2000), 1333-1361.  doi: 10.1142/S0218202500000653.  Google Scholar

[10]

L. Hsiao and K.-J. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations, J. Differential Equations, 165 (2000), 315-354.  doi: 10.1006/jdeq.2000.3780.  Google Scholar

[11]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605.   Google Scholar

[12]

A. Jüngel, Quasi-hydrodynamic semiconductor equations, in Progress in Nonlinear Differential Equations, Birkhäuser, 2001. doi: 10.1007/978-3-0348-8334-4.  Google Scholar

[13]

Q.-C. Ju, Global smooth solutions to the multidimensional hydrodynamic model for plasmas with insulating boundary conditions, J. Math. Anal. Appl., 336 (2007), 888-904.  doi: 10.1016/j.jmaa.2007.03.038.  Google Scholar

[14]

Q.-C. JuH.-L. LiY. Li and S. Jiang, Quasi-neutral limit of the two-fluid Euler-Poisson system, Comm. Pure Appl. Anal., 9 (2010), 1577-1590.  doi: 10.3934/cpaa.2010.9.1577.  Google Scholar

[15]

C. Lattanzio, On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit, Math. Models Methods Appl. Sci., 10 (2000), 351-360.  doi: 10.1142/S0218202500000215.  Google Scholar

[16]

Y.-P. Li and T. Zhang, Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, J. Differential Equations, 251 (2011), 3143-3162.  doi: 10.1016/j.jde.2011.07.018.  Google Scholar

[17]

Y.-P. Li, Diffusion relaxation limit of a bipolar isentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 336 (2007), 1341-1356.  doi: 10.1016/j.jmaa.2007.03.068.  Google Scholar

[18]

Y.-P. Li, Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system, Dis. Contin. Dyn. Sys., B16 (2011), 345-360.  doi: 10.3934/dcdsb.2011.16.345.  Google Scholar

[19]

Y.-P. Li and X.-F. Yang, Global existence and asymptotic behavior of the solutions to the three dimensional bipolar Euler-Poisson systems, J. Differential Equations, 252 (2012), 768-791.  doi: 10.1016/j.jde.2011.08.008.  Google Scholar

[20]

J. LiaoW. K. Wang and T. Yang, $ L^{p}$ convergence rates of planar waves for multi-dimensional Euler equations with damping, J. Differential Equations, 247 (2009), 303-329.  doi: 10.1016/j.jde.2009.03.011.  Google Scholar

[21]

P. A. Markowich, C. A. Ringhofev and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, New York, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[22]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation, J. Math. Anal. Appl., 198 (1996), 262-281.  doi: 10.1006/jmaa.1996.0081.  Google Scholar

[23]

Y.-J. Peng and J. Xu, Global well-posedness of the hydrodynamic model for two-carrier plasmas, J. Differential Equations, 255 (2013), 3447-3471.  doi: 10.1016/j.jde.2013.07.045.  Google Scholar

[24]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.  Google Scholar

[25]

A. Sitnko and V. Malnev, Plasma Physics Theory, London: Chapman & Hall, 1995.  Google Scholar

[26]

N. Tsuge, Existence and uniqueness of stationary solutions to a one-dimensional bipolar hydrodynamic models of semiconductors, Nonlinear Anal. TMA, 73 (2010), 779-787.  doi: 10.1016/j.na.2010.04.015.  Google Scholar

[27]

Z.-G. Wu and W.-K. Wang, Decay of the solution to the bipolar Euler-Poisson system with damping in $ R^3$, Commun. Math. Sci., 12 (2014), 1257-1276.  doi: 10.4310/CMS.2014.v12.n7.a5.  Google Scholar

[28]

W. Wang and T. Yang, Existence and stability of planar diffusion waves for $ 2-D$ Euler equations with damping, J. Differential Equations, 242 (2007), 40-71.  doi: 10.1016/j.jde.2007.07.002.  Google Scholar

[29]

C. Zhu and H. Hattori, Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species, J. Differential Equations, 166 (2000), 1-32.  doi: 10.1006/jdeq.2000.3799.  Google Scholar

[30]

F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system, J. Math. Anal. Appl., 351 (2009), 480-490.  doi: 10.1016/j.jmaa.2008.10.032.  Google Scholar

show all references

References:
[1]

G. Ali and A. Jüngel, Global smooth solutions to the multi-dimensional hydrodynamic model for two-carrier plasma, J. Differential Equations, 190 (2003), 663-685.  doi: 10.1016/S0022-0396(02)00157-2.  Google Scholar

[2]

G. Ali and L. Chen, The zero-electron-mass limit in the Euler-Poisson system for both well- and ill-prepared initial data, Nonlinearity, 24 (2011), 2745-2761.  doi: 10.1088/0951-7715/24/10/005.  Google Scholar

[3]

D. DonatelliM. MeiB. Rubino and R. Sampalmieri, Asymptotic behavior of solutions to Euler-Poisson equations for bipolar hydrodynamic model of semiconductors, J. Differential Equations, 255 (2013), 3150-3184.  doi: 10.1016/j.jde.2013.07.027.  Google Scholar

[4]

I. GasserL. Hsiao and H.-L. Li, Large time behavior of solutions of the bipolar hydrodynamical model for semiconductors, J. Differential Equations, 192 (2003), 326-359.  doi: 10.1016/S0022-0396(03)00122-0.  Google Scholar

[5]

I. Gasser and P. Marcati, The combined relaxation and vanishing Debye length limit in the hydrodynamic model for semiconductors, Math. Meth. Appl. Sci., 24 (2001), 81-92.  doi: 10.1002/1099-1476(20010125)24:2<81::AID-MMA198>3.3.CO;2-O.  Google Scholar

[6]

F.-M. Huang and Y.-P. Li, Large time behavior and quasineutral limit of solutions to a bipolar hydrodynamic model with large data and vacuum, Dis. Contin. Dyn. Sys., A24 (2009), 455-470.  doi: 10.3934/dcds.2009.24.455.  Google Scholar

[7]

F.-M. HuangM. Mei and Y. Wang, Large time behavior of solution to n-dimensional bipolar hydrodynamic model for semiconductors, SIAM J. Math. Anal., 43 (2011), 1595-1630.  doi: 10.1137/100810228.  Google Scholar

[8]

F.-M. HuangM. MeiY. Wang and T. Yang, Large-time behavior of solution to the bipolar hydrodynamic model of semiconductors with boundary effects, SIAM J. Math. Anal., 44 (2012), 1134-1164.  doi: 10.1137/110831647.  Google Scholar

[9]

L. Hsiao and K.-J. Zhang, The global weak solution and relaxation limits of the initial boundary value problem to the bipolar hydrodynamic model for semiconductors, Math. Models Methods Appl. Sci., 10 (2000), 1333-1361.  doi: 10.1142/S0218202500000653.  Google Scholar

[10]

L. Hsiao and K.-J. Zhang, The relaxation of the hydrodynamic model for semiconductors to the drift-diffusion equations, J. Differential Equations, 165 (2000), 315-354.  doi: 10.1006/jdeq.2000.3780.  Google Scholar

[11]

L. Hsiao and T.-P. Liu, Convergence to nonlinear diffusion waves for solutions of a system of hyperbolic conservation laws with damping, Comm. Math. Phys., 143 (1992), 599-605.   Google Scholar

[12]

A. Jüngel, Quasi-hydrodynamic semiconductor equations, in Progress in Nonlinear Differential Equations, Birkhäuser, 2001. doi: 10.1007/978-3-0348-8334-4.  Google Scholar

[13]

Q.-C. Ju, Global smooth solutions to the multidimensional hydrodynamic model for plasmas with insulating boundary conditions, J. Math. Anal. Appl., 336 (2007), 888-904.  doi: 10.1016/j.jmaa.2007.03.038.  Google Scholar

[14]

Q.-C. JuH.-L. LiY. Li and S. Jiang, Quasi-neutral limit of the two-fluid Euler-Poisson system, Comm. Pure Appl. Anal., 9 (2010), 1577-1590.  doi: 10.3934/cpaa.2010.9.1577.  Google Scholar

[15]

C. Lattanzio, On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the drift-diffusion limit, Math. Models Methods Appl. Sci., 10 (2000), 351-360.  doi: 10.1142/S0218202500000215.  Google Scholar

[16]

Y.-P. Li and T. Zhang, Relaxation-time limit of the multidimensional bipolar hydrodynamic model in Besov space, J. Differential Equations, 251 (2011), 3143-3162.  doi: 10.1016/j.jde.2011.07.018.  Google Scholar

[17]

Y.-P. Li, Diffusion relaxation limit of a bipolar isentropic hydrodynamic model for semiconductors, J. Math. Anal. Appl., 336 (2007), 1341-1356.  doi: 10.1016/j.jmaa.2007.03.068.  Google Scholar

[18]

Y.-P. Li, Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system, Dis. Contin. Dyn. Sys., B16 (2011), 345-360.  doi: 10.3934/dcdsb.2011.16.345.  Google Scholar

[19]

Y.-P. Li and X.-F. Yang, Global existence and asymptotic behavior of the solutions to the three dimensional bipolar Euler-Poisson systems, J. Differential Equations, 252 (2012), 768-791.  doi: 10.1016/j.jde.2011.08.008.  Google Scholar

[20]

J. LiaoW. K. Wang and T. Yang, $ L^{p}$ convergence rates of planar waves for multi-dimensional Euler equations with damping, J. Differential Equations, 247 (2009), 303-329.  doi: 10.1016/j.jde.2009.03.011.  Google Scholar

[21]

P. A. Markowich, C. A. Ringhofev and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Wien, New York, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[22]

R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equation, J. Math. Anal. Appl., 198 (1996), 262-281.  doi: 10.1006/jmaa.1996.0081.  Google Scholar

[23]

Y.-J. Peng and J. Xu, Global well-posedness of the hydrodynamic model for two-carrier plasmas, J. Differential Equations, 255 (2013), 3447-3471.  doi: 10.1016/j.jde.2013.07.045.  Google Scholar

[24]

E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.  Google Scholar

[25]

A. Sitnko and V. Malnev, Plasma Physics Theory, London: Chapman & Hall, 1995.  Google Scholar

[26]

N. Tsuge, Existence and uniqueness of stationary solutions to a one-dimensional bipolar hydrodynamic models of semiconductors, Nonlinear Anal. TMA, 73 (2010), 779-787.  doi: 10.1016/j.na.2010.04.015.  Google Scholar

[27]

Z.-G. Wu and W.-K. Wang, Decay of the solution to the bipolar Euler-Poisson system with damping in $ R^3$, Commun. Math. Sci., 12 (2014), 1257-1276.  doi: 10.4310/CMS.2014.v12.n7.a5.  Google Scholar

[28]

W. Wang and T. Yang, Existence and stability of planar diffusion waves for $ 2-D$ Euler equations with damping, J. Differential Equations, 242 (2007), 40-71.  doi: 10.1016/j.jde.2007.07.002.  Google Scholar

[29]

C. Zhu and H. Hattori, Stability of steady state solutions for an isentropic hydrodynamic model of semiconductors of two species, J. Differential Equations, 166 (2000), 1-32.  doi: 10.1006/jdeq.2000.3799.  Google Scholar

[30]

F. Zhou and Y.-P. Li, Existence and some limits of stationary solutions to a one-dimensional bipolar Euler-Poisson system, J. Math. Anal. Appl., 351 (2009), 480-490.  doi: 10.1016/j.jmaa.2008.10.032.  Google Scholar

[1]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[2]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[3]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[6]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[7]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[8]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[9]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[10]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[13]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[15]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[16]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[17]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[18]

Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[19]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (84)
  • HTML views (232)
  • Cited by (1)

Other articles
by authors

[Back to Top]