• Previous Article
    A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach
  • CPAA Home
  • This Issue
  • Next Article
    Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations
May  2019, 18(3): 1351-1358. doi: 10.3934/cpaa.2019065

Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up

1. 

College of Science, Harbin Engineering University, 150001, China

2. 

College of Computer Science and Technology, Harbin Engineering University, 150001, China

3. 

Department of Mathematics, University of Texas, Arlington, TX 76019, USA

* Corresponding author

Received  June 2018 Revised  September 2018 Published  November 2018

Fund Project: The first author was supported by the National Natural Science Foundation of China (11801114), the Heilongjiang Postdoctoral Foundation (LBH-Z15036), the China Scholarship Council (201706685064), the Fundamental Research Funds for the Central Universities. The second author was supported by the National Natural Science Foundation of China (11871017), the China Postdoctoral Science Foundation (2013M540270), the Fundamental Research Funds for the Central Universities.

By introducing a new increasing auxiliary function and employing the adapted concavity method, this paper presents a finite time blow up result of the solution for the initial boundary value problem of a class of nonlinear wave equations with both strongly and weakly damped terms at supercritical initial energy level.

Citation: Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065
References:
[1]

B. Bilgin and V. Kalantarov, Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations, J. Math. Anal. Appl., 403 (2013), 89-94.  doi: 10.1016/j.jmaa.2013.01.056.  Google Scholar

[2]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[3]

H. Chen and G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math., 80 (2015), 1808-1836.  doi: 10.1093/imamat/hxv018.  Google Scholar

[4]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar

[5]

S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 559-566.  doi: 10.3934/dcdss.2012.5.559.  Google Scholar

[6]

S. Gerbi and B. Said-Houari, Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions, Adv. Nonlinear Anal., 2 (2013), 163-193.   Google Scholar

[7]

P. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66 (2012), 81-122.  doi: 10.1007/s00245-012-9165-1.  Google Scholar

[8]

G. Liu and S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on R-N, Comput. Math. Appl., 70 (2015), 1345-1356.  doi: 10.1016/j.camwa.2015.07.021.  Google Scholar

[9]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[10]

G. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2015), 129-134.  doi: 10.1007/s00033-014-0400-2.  Google Scholar

[11]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23 (2010), 79-92.   Google Scholar

[12]

J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043. doi: 10.1142/S0129167X13500432.  Google Scholar

[13]

H. Song and D. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., 19 (2014), 245-251.  doi: 10.1016/j.na.2014.06.012.  Google Scholar

[14]

H. Song and C. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 3877-3883.  doi: 10.1016/j.nonrwa.2010.02.015.  Google Scholar

[15]

Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.  doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[16]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA J. Appl. Math., 74 (2009), 392-415.  doi: 10.1093/imamat/hxp004.  Google Scholar

[17]

T. Wick, Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53 (2014), 29-43.  doi: 10.1007/s00466-013-0890-3.  Google Scholar

[18]

R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468.   Google Scholar

[19]

R. Xu and Y. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, Quart. Appl. Math., 71 (2013), 401-415.  doi: 10.1090/s0033-569x-2012-01295-6.  Google Scholar

[20]

R. XuY. Yang and Y. Liu, Global well-posedness for strongly damped viscoelastic wave equation, Appl. Anal., 92 (2013), 138-157.  doi: 10.1080/00036811.2011.601456.  Google Scholar

[21]

R. XuY. YangB. LiuJ. Shen and S. Huang, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015), 955-976.  doi: 10.1007/s00033-014-0459-9.  Google Scholar

[22]

X. ZhuF. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14 (2015), 2465-2485.  doi: 10.3934/cpaa.2015.14.2465.  Google Scholar

show all references

References:
[1]

B. Bilgin and V. Kalantarov, Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations, J. Math. Anal. Appl., 403 (2013), 89-94.  doi: 10.1016/j.jmaa.2013.01.056.  Google Scholar

[2]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[3]

H. Chen and G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math., 80 (2015), 1808-1836.  doi: 10.1093/imamat/hxv018.  Google Scholar

[4]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar

[5]

S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 559-566.  doi: 10.3934/dcdss.2012.5.559.  Google Scholar

[6]

S. Gerbi and B. Said-Houari, Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions, Adv. Nonlinear Anal., 2 (2013), 163-193.   Google Scholar

[7]

P. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66 (2012), 81-122.  doi: 10.1007/s00245-012-9165-1.  Google Scholar

[8]

G. Liu and S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on R-N, Comput. Math. Appl., 70 (2015), 1345-1356.  doi: 10.1016/j.camwa.2015.07.021.  Google Scholar

[9]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[10]

G. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2015), 129-134.  doi: 10.1007/s00033-014-0400-2.  Google Scholar

[11]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23 (2010), 79-92.   Google Scholar

[12]

J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043. doi: 10.1142/S0129167X13500432.  Google Scholar

[13]

H. Song and D. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., 19 (2014), 245-251.  doi: 10.1016/j.na.2014.06.012.  Google Scholar

[14]

H. Song and C. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 3877-3883.  doi: 10.1016/j.nonrwa.2010.02.015.  Google Scholar

[15]

Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.  doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[16]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA J. Appl. Math., 74 (2009), 392-415.  doi: 10.1093/imamat/hxp004.  Google Scholar

[17]

T. Wick, Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53 (2014), 29-43.  doi: 10.1007/s00466-013-0890-3.  Google Scholar

[18]

R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468.   Google Scholar

[19]

R. Xu and Y. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, Quart. Appl. Math., 71 (2013), 401-415.  doi: 10.1090/s0033-569x-2012-01295-6.  Google Scholar

[20]

R. XuY. Yang and Y. Liu, Global well-posedness for strongly damped viscoelastic wave equation, Appl. Anal., 92 (2013), 138-157.  doi: 10.1080/00036811.2011.601456.  Google Scholar

[21]

R. XuY. YangB. LiuJ. Shen and S. Huang, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015), 955-976.  doi: 10.1007/s00033-014-0459-9.  Google Scholar

[22]

X. ZhuF. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14 (2015), 2465-2485.  doi: 10.3934/cpaa.2015.14.2465.  Google Scholar

Table 1.  Obtained results and open problems for problem (1)-(3)
Global existence Asymptotic behavior Blow up
Subcritical initial energy $E(0)<d$ Reference [4] Reference [4] Reference [4]
Critical initial energy $E(0)=d$ Reference [4] Reference [4] Reference [4]
Supercritical initial energy $E(0)>d$ Open problem Open problem $\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Reference [4]
$\omega>0$, $\mu>0$
$\omega>0$, $\mu=0$
$\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Present paper
Global existence Asymptotic behavior Blow up
Subcritical initial energy $E(0)<d$ Reference [4] Reference [4] Reference [4]
Critical initial energy $E(0)=d$ Reference [4] Reference [4] Reference [4]
Supercritical initial energy $E(0)>d$ Open problem Open problem $\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Reference [4]
$\omega>0$, $\mu>0$
$\omega>0$, $\mu=0$
$\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Present paper
[1]

Fritz Gesztesy, Helge Holden, Johanna Michor, Gerald Teschl. The algebro-geometric initial value problem for the Ablowitz-Ladik hierarchy. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 151-196. doi: 10.3934/dcds.2010.26.151

[2]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[3]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[4]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

[5]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[6]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[7]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329

[10]

Murat Uzunca, Ayşe Sarıaydın-Filibelioǧlu. Adaptive discontinuous galerkin finite elements for advective Allen-Cahn equation. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 269-281. doi: 10.3934/naco.2020025

[11]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453

[12]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[13]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[14]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[15]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[16]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[17]

Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597

[18]

Olena Naboka. On synchronization of oscillations of two coupled Berger plates with nonlinear interior damping. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1933-1956. doi: 10.3934/cpaa.2009.8.1933

[19]

Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021018

[20]

Jian Yang, Bendong Lou. Traveling wave solutions of competitive models with free boundaries. Discrete & Continuous Dynamical Systems - B, 2014, 19 (3) : 817-826. doi: 10.3934/dcdsb.2014.19.817

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (356)
  • HTML views (360)
  • Cited by (3)

Other articles
by authors

[Back to Top]