• Previous Article
    A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach
  • CPAA Home
  • This Issue
  • Next Article
    Some Remarks on regularity criteria of Axially symmetric Navier-Stokes equations
May  2019, 18(3): 1351-1358. doi: 10.3934/cpaa.2019065

Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up

1. 

College of Science, Harbin Engineering University, 150001, China

2. 

College of Computer Science and Technology, Harbin Engineering University, 150001, China

3. 

Department of Mathematics, University of Texas, Arlington, TX 76019, USA

* Corresponding author

Received  June 2018 Revised  September 2018 Published  November 2018

Fund Project: The first author was supported by the National Natural Science Foundation of China (11801114), the Heilongjiang Postdoctoral Foundation (LBH-Z15036), the China Scholarship Council (201706685064), the Fundamental Research Funds for the Central Universities. The second author was supported by the National Natural Science Foundation of China (11871017), the China Postdoctoral Science Foundation (2013M540270), the Fundamental Research Funds for the Central Universities.

By introducing a new increasing auxiliary function and employing the adapted concavity method, this paper presents a finite time blow up result of the solution for the initial boundary value problem of a class of nonlinear wave equations with both strongly and weakly damped terms at supercritical initial energy level.

Citation: Yanbing Yang, Runzhang Xu. Nonlinear wave equation with both strongly and weakly damped terms: Supercritical initial energy finite time blow up. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1351-1358. doi: 10.3934/cpaa.2019065
References:
[1]

B. Bilgin and V. Kalantarov, Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations, J. Math. Anal. Appl., 403 (2013), 89-94.  doi: 10.1016/j.jmaa.2013.01.056.  Google Scholar

[2]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[3]

H. Chen and G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math., 80 (2015), 1808-1836.  doi: 10.1093/imamat/hxv018.  Google Scholar

[4]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar

[5]

S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 559-566.  doi: 10.3934/dcdss.2012.5.559.  Google Scholar

[6]

S. Gerbi and B. Said-Houari, Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions, Adv. Nonlinear Anal., 2 (2013), 163-193.   Google Scholar

[7]

P. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66 (2012), 81-122.  doi: 10.1007/s00245-012-9165-1.  Google Scholar

[8]

G. Liu and S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on R-N, Comput. Math. Appl., 70 (2015), 1345-1356.  doi: 10.1016/j.camwa.2015.07.021.  Google Scholar

[9]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[10]

G. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2015), 129-134.  doi: 10.1007/s00033-014-0400-2.  Google Scholar

[11]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23 (2010), 79-92.   Google Scholar

[12]

J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043. doi: 10.1142/S0129167X13500432.  Google Scholar

[13]

H. Song and D. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., 19 (2014), 245-251.  doi: 10.1016/j.na.2014.06.012.  Google Scholar

[14]

H. Song and C. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 3877-3883.  doi: 10.1016/j.nonrwa.2010.02.015.  Google Scholar

[15]

Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.  doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[16]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA J. Appl. Math., 74 (2009), 392-415.  doi: 10.1093/imamat/hxp004.  Google Scholar

[17]

T. Wick, Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53 (2014), 29-43.  doi: 10.1007/s00466-013-0890-3.  Google Scholar

[18]

R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468.   Google Scholar

[19]

R. Xu and Y. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, Quart. Appl. Math., 71 (2013), 401-415.  doi: 10.1090/s0033-569x-2012-01295-6.  Google Scholar

[20]

R. XuY. Yang and Y. Liu, Global well-posedness for strongly damped viscoelastic wave equation, Appl. Anal., 92 (2013), 138-157.  doi: 10.1080/00036811.2011.601456.  Google Scholar

[21]

R. XuY. YangB. LiuJ. Shen and S. Huang, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015), 955-976.  doi: 10.1007/s00033-014-0459-9.  Google Scholar

[22]

X. ZhuF. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14 (2015), 2465-2485.  doi: 10.3934/cpaa.2015.14.2465.  Google Scholar

show all references

References:
[1]

B. Bilgin and V. Kalantarov, Blow up of solutions to the initial boundary value problem for quasilinear strongly damped wave equations, J. Math. Anal. Appl., 403 (2013), 89-94.  doi: 10.1016/j.jmaa.2013.01.056.  Google Scholar

[2]

L. Bociu and I. Lasiecka, Local Hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differential Equations, 249 (2010), 654-683.  doi: 10.1016/j.jde.2010.03.009.  Google Scholar

[3]

H. Chen and G. Liu, Well-posedness for a class of Kirchhoff equations with damping and memory terms, IMA J. Appl. Math., 80 (2015), 1808-1836.  doi: 10.1093/imamat/hxv018.  Google Scholar

[4]

F. Gazzola and M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 23 (2006), 185-207.  doi: 10.1016/j.anihpc.2005.02.007.  Google Scholar

[5]

S. Gerbi and B. Said-Houari, Exponential decay for solutions to semilinear damped wave equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 559-566.  doi: 10.3934/dcdss.2012.5.559.  Google Scholar

[6]

S. Gerbi and B. Said-Houari, Global existence and exponential growth for a viscoelastic wave equation with dynamic boundary conditions, Adv. Nonlinear Anal., 2 (2013), 163-193.   Google Scholar

[7]

P. Graber and B. Said-Houari, Existence and asymptotic behavior of the wave equation with dynamic boundary conditions, Appl. Math. Optim., 66 (2012), 81-122.  doi: 10.1007/s00245-012-9165-1.  Google Scholar

[8]

G. Liu and S. Xia, Global existence and finite time blow up for a class of semilinear wave equations on R-N, Comput. Math. Appl., 70 (2015), 1345-1356.  doi: 10.1016/j.camwa.2015.07.021.  Google Scholar

[9]

Y. Liu and R. Xu, A class of fourth order wave equations with dissipative and nonlinear strain terms, J. Differential Equations, 244 (2008), 200-228.  doi: 10.1016/j.jde.2007.10.015.  Google Scholar

[10]

G. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2015), 129-134.  doi: 10.1007/s00033-014-0400-2.  Google Scholar

[11]

B. Said-Houari, Global nonexistence of positive initial-energy solutions of a system of nonlinear wave equations with damping and source terms, Differential Integral Equations, 23 (2010), 79-92.   Google Scholar

[12]

J. Shen, Y. Yang, S. Chen and R. Xu, Finite time blow up of fourth-order wave equations with nonlinear strain and source terms at high energy level, Internat. J. Math., 24 (2013), 1350043. doi: 10.1142/S0129167X13500432.  Google Scholar

[13]

H. Song and D. Xue, Blow up in a nonlinear viscoelastic wave equation with strong damping, Nonlinear Anal., 19 (2014), 245-251.  doi: 10.1016/j.na.2014.06.012.  Google Scholar

[14]

H. Song and C. Zhong, Blow-up of solutions of a nonlinear viscoelastic wave equation, Nonlinear Anal. Real World Appl., 11 (2010), 3877-3883.  doi: 10.1016/j.nonrwa.2010.02.015.  Google Scholar

[15]

Y. Wang, A sufficient condition for finite time blow up of the nonlinear Klein-Gordon equations with arbitrarily positive initial energy, Proc. Amer. Math. Soc., 136 (2008), 3477-3482.  doi: 10.1090/S0002-9939-08-09514-2.  Google Scholar

[16]

Y. Wang, Non-existence of global solutions of a class of coupled non-linear Klein-Gordon equations with non-negative potentials and arbitrary initial energy, IMA J. Appl. Math., 74 (2009), 392-415.  doi: 10.1093/imamat/hxp004.  Google Scholar

[17]

T. Wick, Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput. Mech., 53 (2014), 29-43.  doi: 10.1007/s00466-013-0890-3.  Google Scholar

[18]

R. Xu, Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data, Quart. Appl. Math., 68 (2010), 459-468.   Google Scholar

[19]

R. Xu and Y. Yang, Global existence and asymptotic behaviour of solutions for a class of fourth order strongly damped nonlinear wave equations, Quart. Appl. Math., 71 (2013), 401-415.  doi: 10.1090/s0033-569x-2012-01295-6.  Google Scholar

[20]

R. XuY. Yang and Y. Liu, Global well-posedness for strongly damped viscoelastic wave equation, Appl. Anal., 92 (2013), 138-157.  doi: 10.1080/00036811.2011.601456.  Google Scholar

[21]

R. XuY. YangB. LiuJ. Shen and S. Huang, Global existence and blowup of solutions for the multidimensional sixth-order "good" Boussinesq equation, Z. Angew. Math. Phys., 66 (2015), 955-976.  doi: 10.1007/s00033-014-0459-9.  Google Scholar

[22]

X. ZhuF. Li and T. Rong, Global existence and blow up of solutions to a class of pseudo-parabolic equations with an exponential source, Commun. Pure Appl. Anal., 14 (2015), 2465-2485.  doi: 10.3934/cpaa.2015.14.2465.  Google Scholar

Table 1.  Obtained results and open problems for problem (1)-(3)
Global existence Asymptotic behavior Blow up
Subcritical initial energy $E(0)<d$ Reference [4] Reference [4] Reference [4]
Critical initial energy $E(0)=d$ Reference [4] Reference [4] Reference [4]
Supercritical initial energy $E(0)>d$ Open problem Open problem $\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Reference [4]
$\omega>0$, $\mu>0$
$\omega>0$, $\mu=0$
$\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Present paper
Global existence Asymptotic behavior Blow up
Subcritical initial energy $E(0)<d$ Reference [4] Reference [4] Reference [4]
Critical initial energy $E(0)=d$ Reference [4] Reference [4] Reference [4]
Supercritical initial energy $E(0)>d$ Open problem Open problem $\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Reference [4]
$\omega>0$, $\mu>0$
$\omega>0$, $\mu=0$
$\omega=0$, $\mu>0$
$\omega=0$, $\mu=0$
Present paper
[1]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[3]

Alex H. Ardila, Mykael Cardoso. Blow-up solutions and strong instability of ground states for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2021, 20 (1) : 101-119. doi: 10.3934/cpaa.2020259

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[6]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[7]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[10]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[13]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[14]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[15]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[16]

Cheng Peng, Zhaohui Tang, Weihua Gui, Qing Chen, Jing He. A bidirectional weighted boundary distance algorithm for time series similarity computation based on optimized sliding window size. Journal of Industrial & Management Optimization, 2021, 17 (1) : 205-220. doi: 10.3934/jimo.2019107

[17]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[18]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (323)
  • HTML views (357)
  • Cited by (3)

Other articles
by authors

[Back to Top]