May  2019, 18(3): 1403-1431. doi: 10.3934/cpaa.2019068

Perturbations of nonlinear eigenvalue problems

1. 

National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece

2. 

Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

3. 

Faculty of Applied Mathematics, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland

4. 

Institute of Mathematics "Simion Stoilow" of the Romanian Academy, P.O. Box 1-764, 014700 Bucharest, Romania

5. 

Faculty of Education and Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia

* Corresponding author

Received  July 2018 Revised  July 2018 Published  November 2018

We consider perturbations of nonlinear eigenvalue problems driven by a nonhomogeneous differential operator plus an indefinite potential. We consider both sublinear and superlinear perturbations and we determine how the set of positive solutions changes as the real parameter $λ$ varies. We also show that there exists a minimal positive solution $\overline{u}_λ$ and determine the monotonicity and continuity properties of the map $λ\mapsto\overline{u}_λ$. Special attention is given to the particular case of the $p$-Laplacian.

Citation: Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu, Dušan D. Repovš. Perturbations of nonlinear eigenvalue problems. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1403-1431. doi: 10.3934/cpaa.2019068
References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Memoirs Amer. Math. Soc., 196 (2008), nr. 915, ⅵ+70 pp. Google Scholar

[2]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Lapacian and applications, Nonlinear Anal., 32 (1998), 819-830. doi: 10.1016/S0362-546X(97)00530-0. Google Scholar

[3]

G. Autuori and P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009. doi: 10.1007/s00030-012-0193-y. Google Scholar

[4]

L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with $p$&$q$ Laplacian, Comm. Pure Appl. Anal., 4 (2005), 9-22. Google Scholar

[5]

F. ColasuonnoP. Pucci and C. Varga, Multiple solutions for an eigenvalue problem involving $p$-Laplacian type operators, Nonlinear Anal., 75 (2012), 4496-4512. doi: 10.1016/j.na.2011.09.048. Google Scholar

[6]

J. I. Diaz and J. E. Saa, Existence et unicité des solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, 305 (1987), 521-524. Google Scholar

[7]

G. FragnelliD. Mugnai and N. S. Papageorgiou, Brezis-Oswald result for quasilinear Robin problems, Adv. Nonlin. Studies, 16 (2016), 403-422. doi: 10.1515/ans-2016-0010. Google Scholar

[8]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. Google Scholar

[9]

L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations, Adv. Nonlin. Studies, 8 (2008), 843-870. doi: 10.1515/ans-2008-0411. Google Scholar

[10]

L. Gasinski and N. S. Papageorgiou, Exercises in Analysis, Part 2: Nonlinear Analysis, Problem Books in Mathematics, Springer, Cham, 2016. Google Scholar

[11]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. Google Scholar

[12]

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613. doi: 10.1016/j.na.2010.02.037. Google Scholar

[13]

G. Lieberman, On the natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Diff. Equations, 16 (1991), 311-361. doi: 10.1080/03605309108820761. Google Scholar

[14]

S. A. Marano and S. Mosconi, Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 279-291. doi: 10.3934/dcdss.2018015. Google Scholar

[15]

S. A. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal., 12 (2013), 815-829. doi: 10.3934/cpaa.2013.12.815. Google Scholar

[16]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 729-788. Google Scholar

[17]

N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. Google Scholar

[18]

N. S. Papageorgiou and V. D. Rădulescu, Coercive and noncoercive nonlinear Neumann problems with indefinite potential, Forum Math., 28 (2016), 545-571. doi: 10.1515/forum-2014-0094. Google Scholar

[19]

N. S. Papageorgiou and V. D. Rădulescu, Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Revista Mat. Iberoam., 33 (2017), 251-289. doi: 10.4171/RMI/936. Google Scholar

[20]

N. S. Papageorgiou and V. D. Rădulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlin. Studies, 16 (2016), 737-764. Google Scholar

[21]

N. S. PapageorgiouV. D. Rădulescu and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discr. Cont. Dynam. Systems, Ser. A, 37 (2017), 2589-2618. doi: 10.3934/dcds.2017111. Google Scholar

[22]

N. S. PapageorgiouV. D. Rădulescu and D. D. Repovš, Positive solutions for nonlinear nonhomogeneous parametric Robin problems, Forum Math., 30 (2018), 553-580. doi: 10.1515/forum-2017-0124. Google Scholar

[23]

N. S. PapageorgiouV. D. Rădulescu and D. D. Repovš, Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term, Communications on Pure and Applied Analysis, 17 (2018), 231-241. doi: 10.3934/cpaa.2018014. Google Scholar

[24]

K. PereraP. Pucci and C. Varga, An existence result for a class of quasilinear elliptic eigenvalue problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 441-451. doi: 10.1007/s00030-013-0255-9. Google Scholar

[25]

P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007. Google Scholar

show all references

References:
[1]

S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Memoirs Amer. Math. Soc., 196 (2008), nr. 915, ⅵ+70 pp. Google Scholar

[2]

W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Lapacian and applications, Nonlinear Anal., 32 (1998), 819-830. doi: 10.1016/S0362-546X(97)00530-0. Google Scholar

[3]

G. Autuori and P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009. doi: 10.1007/s00030-012-0193-y. Google Scholar

[4]

L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with $p$&$q$ Laplacian, Comm. Pure Appl. Anal., 4 (2005), 9-22. Google Scholar

[5]

F. ColasuonnoP. Pucci and C. Varga, Multiple solutions for an eigenvalue problem involving $p$-Laplacian type operators, Nonlinear Anal., 75 (2012), 4496-4512. doi: 10.1016/j.na.2011.09.048. Google Scholar

[6]

J. I. Diaz and J. E. Saa, Existence et unicité des solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, 305 (1987), 521-524. Google Scholar

[7]

G. FragnelliD. Mugnai and N. S. Papageorgiou, Brezis-Oswald result for quasilinear Robin problems, Adv. Nonlin. Studies, 16 (2016), 403-422. doi: 10.1515/ans-2016-0010. Google Scholar

[8]

L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. Google Scholar

[9]

L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations, Adv. Nonlin. Studies, 8 (2008), 843-870. doi: 10.1515/ans-2008-0411. Google Scholar

[10]

L. Gasinski and N. S. Papageorgiou, Exercises in Analysis, Part 2: Nonlinear Analysis, Problem Books in Mathematics, Springer, Cham, 2016. Google Scholar

[11]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997. Google Scholar

[12]

G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613. doi: 10.1016/j.na.2010.02.037. Google Scholar

[13]

G. Lieberman, On the natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Diff. Equations, 16 (1991), 311-361. doi: 10.1080/03605309108820761. Google Scholar

[14]

S. A. Marano and S. Mosconi, Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 279-291. doi: 10.3934/dcdss.2018015. Google Scholar

[15]

S. A. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal., 12 (2013), 815-829. doi: 10.3934/cpaa.2013.12.815. Google Scholar

[16]

D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 729-788. Google Scholar

[17]

N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479. doi: 10.1016/j.jde.2014.01.010. Google Scholar

[18]

N. S. Papageorgiou and V. D. Rădulescu, Coercive and noncoercive nonlinear Neumann problems with indefinite potential, Forum Math., 28 (2016), 545-571. doi: 10.1515/forum-2014-0094. Google Scholar

[19]

N. S. Papageorgiou and V. D. Rădulescu, Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Revista Mat. Iberoam., 33 (2017), 251-289. doi: 10.4171/RMI/936. Google Scholar

[20]

N. S. Papageorgiou and V. D. Rădulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlin. Studies, 16 (2016), 737-764. Google Scholar

[21]

N. S. PapageorgiouV. D. Rădulescu and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discr. Cont. Dynam. Systems, Ser. A, 37 (2017), 2589-2618. doi: 10.3934/dcds.2017111. Google Scholar

[22]

N. S. PapageorgiouV. D. Rădulescu and D. D. Repovš, Positive solutions for nonlinear nonhomogeneous parametric Robin problems, Forum Math., 30 (2018), 553-580. doi: 10.1515/forum-2017-0124. Google Scholar

[23]

N. S. PapageorgiouV. D. Rădulescu and D. D. Repovš, Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term, Communications on Pure and Applied Analysis, 17 (2018), 231-241. doi: 10.3934/cpaa.2018014. Google Scholar

[24]

K. PereraP. Pucci and C. Varga, An existence result for a class of quasilinear elliptic eigenvalue problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 441-451. doi: 10.1007/s00030-013-0255-9. Google Scholar

[25]

P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007. Google Scholar

[1]

Shouchuan Hu, Nikolaos S. Papageorgiou. Nonlinear Neumann equations driven by a nonhomogeneous differential operator. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1055-1078. doi: 10.3934/cpaa.2011.10.1055

[2]

Maria Francesca Betta, Rosaria Di Nardo, Anna Mercaldo, Adamaria Perrotta. Gradient estimates and comparison principle for some nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2015, 14 (3) : 897-922. doi: 10.3934/cpaa.2015.14.897

[3]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[4]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[5]

Nassif Ghoussoub. A variational principle for nonlinear transport equations. Communications on Pure & Applied Analysis, 2005, 4 (4) : 735-742. doi: 10.3934/cpaa.2005.4.735

[6]

Isabeau Birindelli, Francoise Demengel. Eigenvalue, maximum principle and regularity for fully non linear homogeneous operators. Communications on Pure & Applied Analysis, 2007, 6 (2) : 335-366. doi: 10.3934/cpaa.2007.6.335

[7]

H. O. Fattorini. The maximum principle in infinite dimension. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 557-574. doi: 10.3934/dcds.2000.6.557

[8]

Xiaowei Tang, Xilin Fu. New comparison principle with Razumikhin condition for impulsive infinite delay differential systems. Conference Publications, 2009, 2009 (Special) : 739-743. doi: 10.3934/proc.2009.2009.739

[9]

Carlo Orrieri. A stochastic maximum principle with dissipativity conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (11) : 5499-5519. doi: 10.3934/dcds.2015.35.5499

[10]

Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593

[11]

Bernd Kawohl, Vasilii Kurta. A Liouville comparison principle for solutions of singular quasilinear elliptic second-order partial differential inequalities. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1747-1762. doi: 10.3934/cpaa.2011.10.1747

[12]

Dejian Chang, Zhen Wu. Stochastic maximum principle for non-zero sum differential games of FBSDEs with impulse controls and its application to finance. Journal of Industrial & Management Optimization, 2015, 11 (1) : 27-40. doi: 10.3934/jimo.2015.11.27

[13]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[14]

Timothy Blass, Rafael De La Llave, Enrico Valdinoci. A comparison principle for a Sobolev gradient semi-flow. Communications on Pure & Applied Analysis, 2011, 10 (1) : 69-91. doi: 10.3934/cpaa.2011.10.69

[15]

Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571

[16]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003

[17]

Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155

[18]

Jeffrey R. L. Webb. Positive solutions of nonlinear equations via comparison with linear operators. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5507-5519. doi: 10.3934/dcds.2013.33.5507

[19]

Chiun-Chuan Chen, Li-Chang Hung, Hsiao-Feng Liu. N-barrier maximum principle for degenerate elliptic systems and its application. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 791-821. doi: 10.3934/dcds.2018034

[20]

Yunkyong Hyon, Do Young Kwak, Chun Liu. Energetic variational approach in complex fluids: Maximum dissipation principle. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1291-1304. doi: 10.3934/dcds.2010.26.1291

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (74)
  • HTML views (242)
  • Cited by (0)

[Back to Top]