We consider perturbations of nonlinear eigenvalue problems driven by a nonhomogeneous differential operator plus an indefinite potential. We consider both sublinear and superlinear perturbations and we determine how the set of positive solutions changes as the real parameter $λ$ varies. We also show that there exists a minimal positive solution $\overline{u}_λ$ and determine the monotonicity and continuity properties of the map $λ\mapsto\overline{u}_λ$. Special attention is given to the particular case of the $p$-Laplacian.
Citation: |
[1] |
S. Aizicovici, N. S. Papageorgiou and V. Staicu, Degree Theory for Operators of Monotone Type and Nonlinear Elliptic Equations with Inequality Constraints, Memoirs Amer. Math. Soc., 196 (2008), nr. 915, ⅵ+70 pp.
![]() ![]() |
[2] |
W. Allegretto and Y. X. Huang, A Picone's identity for the $p$-Lapacian and applications, Nonlinear Anal., 32 (1998), 819-830.
doi: 10.1016/S0362-546X(97)00530-0.![]() ![]() ![]() |
[3] |
G. Autuori and P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl., 20 (2013), 977-1009.
doi: 10.1007/s00030-012-0193-y.![]() ![]() ![]() |
[4] |
L. Cherfils and Y. Ilyasov, On the stationary solutions of generalized reaction diffusion equations with $p$&$q$ Laplacian, Comm. Pure Appl. Anal., 4 (2005), 9-22.
![]() ![]() |
[5] |
F. Colasuonno, P. Pucci and C. Varga, Multiple solutions for an eigenvalue problem involving $p$-Laplacian type operators, Nonlinear Anal., 75 (2012), 4496-4512.
doi: 10.1016/j.na.2011.09.048.![]() ![]() ![]() |
[6] |
J. I. Diaz and J. E. Saa, Existence et unicité des solutions positives pour certaines équations elliptiques quasilinéaires, C.R. Acad. Sci. Paris, 305 (1987), 521-524.
![]() ![]() |
[7] |
G. Fragnelli, D. Mugnai and N. S. Papageorgiou, Brezis-Oswald result for quasilinear Robin problems, Adv. Nonlin. Studies, 16 (2016), 403-422.
doi: 10.1515/ans-2016-0010.![]() ![]() ![]() |
[8] |
L. Gasinski and N. S. Papageorgiou, Nonlinear Analysis, Series in Mathematical Analysis and Applications, 9, Chapman & Hall/CRC, Boca Raton, FL, 2006.
![]() ![]() |
[9] |
L. Gasinski and N. S. Papageorgiou, Existence and multiplicity of solutions for Neumann $p$-Laplacian type equations, Adv. Nonlin. Studies, 8 (2008), 843-870.
doi: 10.1515/ans-2008-0411.![]() ![]() ![]() |
[10] |
L. Gasinski and N. S. Papageorgiou, Exercises in Analysis, Part 2: Nonlinear Analysis, Problem Books in Mathematics, Springer, Cham, 2016.
![]() ![]() |
[11] |
S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Mathematics and its Applications, 419, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.
![]() ![]() |
[12] |
G. Li and C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of $p$-Laplacian type without the Ambrosetti-Rabinowitz condition, Nonlinear Anal., 72 (2010), 4602-4613.
doi: 10.1016/j.na.2010.02.037.![]() ![]() ![]() |
[13] |
G. Lieberman, On the natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva for elliptic equations, Comm. Partial Diff. Equations, 16 (1991), 311-361.
doi: 10.1080/03605309108820761.![]() ![]() ![]() |
[14] |
S. A. Marano and S. Mosconi, Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations, Discrete Contin. Dyn. Syst. Ser. S, 11 (2018), 279-291.
doi: 10.3934/dcdss.2018015.![]() ![]() ![]() |
[15] |
S. A. Marano and N. S. Papageorgiou, Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal., 12 (2013), 815-829.
doi: 10.3934/cpaa.2013.12.815.![]() ![]() ![]() |
[16] |
D. Mugnai and N. S. Papageorgiou, Resonant nonlinear Neumann problems with indefinite weight, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 11 (2012), 729-788.
![]() ![]() |
[17] |
N. S. Papageorgiou and V. D. Rădulescu, Multiple solutions precise sign for nonlinear parametric Robin problems, J. Differential Equations, 256 (2014), 2449-2479.
doi: 10.1016/j.jde.2014.01.010.![]() ![]() ![]() |
[18] |
N. S. Papageorgiou and V. D. Rădulescu, Coercive and noncoercive nonlinear Neumann problems with indefinite potential, Forum Math., 28 (2016), 545-571.
doi: 10.1515/forum-2014-0094.![]() ![]() ![]() |
[19] |
N. S. Papageorgiou and V. D. Rădulescu, Multiplicity theorems for nonlinear nonhomogeneous Robin problems, Revista Mat. Iberoam., 33 (2017), 251-289.
doi: 10.4171/RMI/936.![]() ![]() ![]() |
[20] |
N. S. Papageorgiou and V. D. Rădulescu, Nonlinear nonhomogeneous Robin problems with superlinear reaction term, Adv. Nonlin. Studies, 16 (2016), 737-764.
![]() ![]() |
[21] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential, Discr. Cont. Dynam. Systems, Ser. A, 37 (2017), 2589-2618.
doi: 10.3934/dcds.2017111.![]() ![]() ![]() |
[22] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Positive solutions for nonlinear nonhomogeneous parametric Robin problems, Forum Math., 30 (2018), 553-580.
doi: 10.1515/forum-2017-0124.![]() ![]() ![]() |
[23] |
N. S. Papageorgiou, V. D. Rădulescu and D. D. Repovš, Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term, Communications on Pure and Applied Analysis, 17 (2018), 231-241.
doi: 10.3934/cpaa.2018014.![]() ![]() ![]() |
[24] |
K. Perera, P. Pucci and C. Varga, An existence result for a class of quasilinear elliptic eigenvalue problems in unbounded domains, NoDEA Nonlinear Differential Equations Appl., 21 (2014), 441-451.
doi: 10.1007/s00030-013-0255-9.![]() ![]() ![]() |
[25] |
P. Pucci and J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and their Applications, 73, Birkhäuser Verlag, Basel, 2007.
![]() ![]() |