• Previous Article
    Applications of generalized trigonometric functions with two parameters
  • CPAA Home
  • This Issue
  • Next Article
    Stability of axially-symmetric solutions to incompressible magnetohydrodynamics with no azimuthal velocity and with only azimuthal magnetic field
May  2019, 18(3): 1483-1508. doi: 10.3934/cpaa.2019071

Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models

1. 

Department of Mathematics, National Central University, Zhongli District, Taoyuan City 32001, Taiwan

2. 

General Education Center, National Taipei University of Technology, Taipei 10608, Taiwan

* Corresponding author

Received  October 2017 Revised  June 2018 Published  November 2018

Fund Project: The first author is partially supported by the NCTS and MOST of Taiwan, and the second author is partially supported by the MOST of Taiwan.

This paper is concerned with the existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. By using Schauder's fixed point theorem and the existence of contracting rectangles, we obtain the existence result. Then we investigate the asymptotic behavior of positive monotone traveling wave solutions by using the modified Ikehara's Theorem. With the help of their asymptotic behavior, we provide a sufficient condition which guarantee that all positive traveling wave solutions of the system are non-monotone. Furthermore, to illustrate our main results, the existence and non-monotonicity of traveling wave solutions of Lotka-Volterra predator-prey model and modified Leslie-Gower predator-prey models with different kinds of functional responses are also discussed.

Citation: Cheng-Hsiung Hsu, Jian-Jhong Lin. Existence and non-monotonicity of traveling wave solutions for general diffusive predator-prey models. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1483-1508. doi: 10.3934/cpaa.2019071
References:
[1]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[2]

M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6.  Google Scholar

[3]

J. R. Beddington, Mutual interference between parasites or predators and it's effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.   Google Scholar

[4]

A. Boumenir and V. Nguyen, Erron Theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Differential Equations, 244 (2008), 1551-1570.  doi: 10.1016/j.jde.2008.01.004.  Google Scholar

[5]

J. B. Conway, Functions of One Complex Variable, $2^{nd}$ edition, Springer-Verlag, New York, 1978.  Google Scholar

[6]

W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[7]

Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[8]

Y. H. Du and M. X. Wang, Asymptotic behaviour of positive steady states to a predator-prey model, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 759-778.  doi: 10.1017/S0308210500004704.  Google Scholar

[9]

S. R. Dubar, Travelling wave solutions of diffusive Lotka-Volterra equations, Journal of Mathematical Biology, 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[10]

S. R. Dubar, Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $R^4$, Transactions of American Mathematical Society, 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[11]

S. R. Dubar, Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits, SIAM Journal on Applied Mathematics, 46 (1986), 1057-1078.  doi: 10.1137/0146063.  Google Scholar

[12]

W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[13]

W. Ellison and F. Ellison, Prime Numbers, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985.  Google Scholar

[14]

R. Gardner, Existence of traveling wave solutions of predator-prey system via the connection index, SIAM Journal on Applied Mathematics, 44 (1984), 56-79.  doi: 10.1137/0144006.  Google Scholar

[15]

C.-H. HsuC.-R. YangT.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prayer type model, J. of Differential Equations, 252 (2012), 3040-3075.  doi: 10.1016/j.jde.2011.11.008.  Google Scholar

[16]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, Journal of Mathematical Analysis and Applications, 41 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[17]

J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity, Discrete and Continuous Dynamical System, 9 (2003), 925-936.  doi: 10.3934/dcds.2003.9.925.  Google Scholar

[18]

J. HuangG. Lu and S. Ruan, Existence of traveling wave solutions in diffusive predator-prey model, Journal of Mathematical Biology, 46 (2003), 132-152.  doi: 10.1007/s00285-002-0171-9.  Google Scholar

[19]

W. Huang, Traveling wave solutions for a class of predator-prey system, Journal of Dynamics and Differential Equations, 24 (2012), 633-644.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[20]

W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems, J. Differential Equations, 260 (2016), 2190-2224.  doi: 10.1016/j.jde.2015.09.060.  Google Scholar

[21]

W. Khellaf and N. Hamri, Boundedness and global stability for a predator-prey system with the Beddington-DeAngelis functional response, Differ. Equ. Nonlinear Mech., 2010 (2010), Article ID 813289. doi: 10.1155/2010/813289.  Google Scholar

[22]

W. T. LiG. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[23]

W. T. Li and S. L. Wu, Traveling waves in a diffusive predator-prey model with holling type-Ⅲ functional response, Chaos Soliton Fractals, 37 (2008), 476-486.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[24]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 4-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[25]

G. LinW. T. Li and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete and Continuous Dynamical System-Series B, 13 (2010), 393-414.  doi: 10.3934/dcdsb.2010.13.393.  Google Scholar

[26]

X. LinC. Wu and P. Weng, Traveling wave solutions for a predator-prey system with sigmoidal response function, Journal of Dynamics and Differential Equations, 23 (2011), 903-921.  doi: 10.1007/s10884-011-9220-7.  Google Scholar

[27]

D. LiangP. Weng and J. Wu, Travelling wave solutions in a delayed predator-prey diffusion PDE system point-to-periodic and point-to-point waves, IMA Journal of Applied Mathematics, 77 (2012), 516-545.  doi: 10.1093/imamat/hxr031.  Google Scholar

[28]

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, Journal of Dynamics and Differential Equations, 23 (2014), 583-605.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[29]

J. J. LinW. WangC. Zhao and T. H. Yang, Global dynamics and traveling wave solutions of two predators-one prey models, Discrete and Continuous Dynamical System-Series B, 20 (2015), 1135-1154.  doi: 10.3934/dcdsb.2015.20.1135.  Google Scholar

[30]

S. Ma, Traveling wavefronts for delayed reaction-diffusion system via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[31]

S. Pan, Convergence and traveling wave solutions for a predator-prey system with distributed delays, Mediterr. J. Math., 14 (2017). doi: 10.1007/s00009-017-0905-y.  Google Scholar

[32]

S. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 4-51.  doi: 10.1016/j.aml.2017.05.014.  Google Scholar

[33]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995.  Google Scholar

[34]

E. TrafimchukM. Pinto and S. Trafimchuk, Traveling waves for a model of the Belousov-Zhabotinsky reaction, J. of Differential Equations, 254 (2013), 3690-3714.  doi: 10.1016/j.jde.2013.02.005.  Google Scholar

[35]

X. S. WangH. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete and Continuous Dynamical System-Series A, 32 (2012), 3303-3324.  doi: 10.3934/dcds.2012.32.3303.  Google Scholar

[36]

D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941.  Google Scholar

[37]

Q. Ye, Z, Li, M. X. Wang and Y. Wu, Introduction to Reaction-Diffusion Equations, $2^{nd}$ edition, Science Press, Beijing, 2011.  Google Scholar

[38]

J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Journal of Mathematical Analysis and Applications, 389 (2012), 1380-1393.  doi: 10.1016/j.jmaa.2012.01.013.  Google Scholar

show all references

References:
[1]

S. AiY. Du and R. Peng, Traveling waves for a generalized Holling-Tanner predator-prey model, J. Differential Equations, 263 (2017), 7782-7814.  doi: 10.1016/j.jde.2017.08.021.  Google Scholar

[2]

M. A. Aziz-Alaoui and M. D. Okiye, Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes, Applied Mathematics Letters, 16 (2003), 1069-1075.  doi: 10.1016/S0893-9659(03)90096-6.  Google Scholar

[3]

J. R. Beddington, Mutual interference between parasites or predators and it's effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331-340.   Google Scholar

[4]

A. Boumenir and V. Nguyen, Erron Theorem in the monotone iteration method for traveling waves in delayed reaction-diffusion equations, J. Differential Equations, 244 (2008), 1551-1570.  doi: 10.1016/j.jde.2008.01.004.  Google Scholar

[5]

J. B. Conway, Functions of One Complex Variable, $2^{nd}$ edition, Springer-Verlag, New York, 1978.  Google Scholar

[6]

W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[7]

Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.  doi: 10.1016/j.jde.2004.05.010.  Google Scholar

[8]

Y. H. Du and M. X. Wang, Asymptotic behaviour of positive steady states to a predator-prey model, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 759-778.  doi: 10.1017/S0308210500004704.  Google Scholar

[9]

S. R. Dubar, Travelling wave solutions of diffusive Lotka-Volterra equations, Journal of Mathematical Biology, 17 (1983), 11-32.  doi: 10.1007/BF00276112.  Google Scholar

[10]

S. R. Dubar, Traveling wave solutions of diffusive Lotka-Volterra equations: a heteroclinic connection in $R^4$, Transactions of American Mathematical Society, 286 (1984), 557-594.  doi: 10.2307/1999810.  Google Scholar

[11]

S. R. Dubar, Traveling waves in diffusive predator-prey equations: periodic orbits and point-to-periodic heteroclinic orbits, SIAM Journal on Applied Mathematics, 46 (1986), 1057-1078.  doi: 10.1137/0146063.  Google Scholar

[12]

W. Ding and W. Huang, Traveling wave solutions for some classes of diffusive predator-prey models, Journal of Dynamics and Differential Equations, 28 (2016), 1293-1308.  doi: 10.1007/s10884-015-9472-8.  Google Scholar

[13]

W. Ellison and F. Ellison, Prime Numbers, A Wiley-Interscience Publication, John Wiley & Sons Inc., New York, 1985.  Google Scholar

[14]

R. Gardner, Existence of traveling wave solutions of predator-prey system via the connection index, SIAM Journal on Applied Mathematics, 44 (1984), 56-79.  doi: 10.1137/0144006.  Google Scholar

[15]

C.-H. HsuC.-R. YangT.-H. Yang and T.-S. Yang, Existence of traveling wave solutions for diffusive predator-prayer type model, J. of Differential Equations, 252 (2012), 3040-3075.  doi: 10.1016/j.jde.2011.11.008.  Google Scholar

[16]

Y. L. Huang and G. Lin, Traveling wave solutions in a diffusive system with two preys and one predator, Journal of Mathematical Analysis and Applications, 41 (2014), 163-184.  doi: 10.1016/j.jmaa.2014.03.085.  Google Scholar

[17]

J. Huang and X. Zou, Existence of traveling wavefronts of delayed reaction-diffusion systems without monotonicity, Discrete and Continuous Dynamical System, 9 (2003), 925-936.  doi: 10.3934/dcds.2003.9.925.  Google Scholar

[18]

J. HuangG. Lu and S. Ruan, Existence of traveling wave solutions in diffusive predator-prey model, Journal of Mathematical Biology, 46 (2003), 132-152.  doi: 10.1007/s00285-002-0171-9.  Google Scholar

[19]

W. Huang, Traveling wave solutions for a class of predator-prey system, Journal of Dynamics and Differential Equations, 24 (2012), 633-644.  doi: 10.1007/s10884-012-9255-4.  Google Scholar

[20]

W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems, J. Differential Equations, 260 (2016), 2190-2224.  doi: 10.1016/j.jde.2015.09.060.  Google Scholar

[21]

W. Khellaf and N. Hamri, Boundedness and global stability for a predator-prey system with the Beddington-DeAngelis functional response, Differ. Equ. Nonlinear Mech., 2010 (2010), Article ID 813289. doi: 10.1155/2010/813289.  Google Scholar

[22]

W. T. LiG. Lin and S. Ruan, Existence of traveling wave solutions in delayed reaction-diffusion systems with applications to diffusion-competition systems, Nonlinearity, 19 (2006), 1253-1273.  doi: 10.1088/0951-7715/19/6/003.  Google Scholar

[23]

W. T. Li and S. L. Wu, Traveling waves in a diffusive predator-prey model with holling type-Ⅲ functional response, Chaos Soliton Fractals, 37 (2008), 476-486.  doi: 10.1016/j.chaos.2006.09.039.  Google Scholar

[24]

G. Lin, Invasion traveling wave solutions of a predator-prey system, Nonlinear Anal., 96 (2014), 4-58.  doi: 10.1016/j.na.2013.10.024.  Google Scholar

[25]

G. LinW. T. Li and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete and Continuous Dynamical System-Series B, 13 (2010), 393-414.  doi: 10.3934/dcdsb.2010.13.393.  Google Scholar

[26]

X. LinC. Wu and P. Weng, Traveling wave solutions for a predator-prey system with sigmoidal response function, Journal of Dynamics and Differential Equations, 23 (2011), 903-921.  doi: 10.1007/s10884-011-9220-7.  Google Scholar

[27]

D. LiangP. Weng and J. Wu, Travelling wave solutions in a delayed predator-prey diffusion PDE system point-to-periodic and point-to-point waves, IMA Journal of Applied Mathematics, 77 (2012), 516-545.  doi: 10.1093/imamat/hxr031.  Google Scholar

[28]

G. Lin and S. Ruan, Traveling wave solutions for delayed reaction-diffusion systems and applications to diffusive Lotka-Volterra competition models with distributed delays, Journal of Dynamics and Differential Equations, 23 (2014), 583-605.  doi: 10.1007/s10884-014-9355-4.  Google Scholar

[29]

J. J. LinW. WangC. Zhao and T. H. Yang, Global dynamics and traveling wave solutions of two predators-one prey models, Discrete and Continuous Dynamical System-Series B, 20 (2015), 1135-1154.  doi: 10.3934/dcdsb.2015.20.1135.  Google Scholar

[30]

S. Ma, Traveling wavefronts for delayed reaction-diffusion system via a fixed point theorem, J. Differential Equations, 171 (2001), 294-314.  doi: 10.1006/jdeq.2000.3846.  Google Scholar

[31]

S. Pan, Convergence and traveling wave solutions for a predator-prey system with distributed delays, Mediterr. J. Math., 14 (2017). doi: 10.1007/s00009-017-0905-y.  Google Scholar

[32]

S. Pan, Invasion speed of a predator-prey system, Appl. Math. Lett., 74 (2017), 4-51.  doi: 10.1016/j.aml.2017.05.014.  Google Scholar

[33]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, AMS, Providence, 1995.  Google Scholar

[34]

E. TrafimchukM. Pinto and S. Trafimchuk, Traveling waves for a model of the Belousov-Zhabotinsky reaction, J. of Differential Equations, 254 (2013), 3690-3714.  doi: 10.1016/j.jde.2013.02.005.  Google Scholar

[35]

X. S. WangH. Wang and J. Wu, Traveling waves of diffusive predator-prey systems: disease outbreak propagation, Discrete and Continuous Dynamical System-Series A, 32 (2012), 3303-3324.  doi: 10.3934/dcds.2012.32.3303.  Google Scholar

[36]

D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, NJ, 1941.  Google Scholar

[37]

Q. Ye, Z, Li, M. X. Wang and Y. Wu, Introduction to Reaction-Diffusion Equations, $2^{nd}$ edition, Science Press, Beijing, 2011.  Google Scholar

[38]

J. Zhou, Positive solutions of a diffusive predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes, Journal of Mathematical Analysis and Applications, 389 (2012), 1380-1393.  doi: 10.1016/j.jmaa.2012.01.013.  Google Scholar

Figure 1.  graphs of functions $g_1(\cdot)$ and $g_2(\cdot).$
Figure 2.  Graphs of $\overline{\phi}_n(\xi)$ and $\underline{\phi}_n(\xi)$ with $n = 1, 2$.
Figure 3.  The regions of $\Omega_1, \Omega_2$, line segments $L_1, L_2$ and tangent line $L_{2T}$.
Figure 4.  The regions of $\Omega_3, \Omega_4$, line segments $L_3, L_4$ and tangent line $L_{4T}$.
Figure 5.  The strictly contracting rectangle $[{\bf{a}}(s), {\bf{b}}(s)]$ with $s \in [0, 1]$.
[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[5]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[6]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[7]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[8]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[15]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[16]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[17]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[18]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[19]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[20]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020276

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (157)
  • HTML views (271)
  • Cited by (0)

Other articles
by authors

[Back to Top]