• Previous Article
    Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential
  • CPAA Home
  • This Issue
  • Next Article
    Applications of generalized trigonometric functions with two parameters
May  2019, 18(3): 1523-1545. doi: 10.3934/cpaa.2019073

Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term

1. 

Department of Mathematics, Yunnan Normal University, Kunming 650500, China

2. 

College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China

* Corresponding author

Received  February 2017 Revised  February 2018 Published  November 2018

Fund Project: This work is supported by NSF of China (11501488), Yunnan Applied Basic Research Projects (2018FD015), the Scientific Research Foundation Project of Yunnan Education Department (2018JS150), Nan Hu Young Scholar Supporting Program of XYNU.

The Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term are studied. The Riemann solutions exactly include two kinds: delta-shock solutions and vacuum solutions. In order to see more clearly the influence of the source term on Riemann solutions, the generalized Rankine-Hugoniot relations of delta shock waves are derived in detail, and the position, propagation speed and strength of delta shock wave are given. It is also shown that, as the source term vanishes, the Riemann solutions converge to the corresponding ones of the homogeneous system, which is just the generalized zero-pressure flow model and contains the one-dimensional zero-pressure flow as a prototypical example. Furthermore, the generalized balance relations associated with the generalized mass and momentum transportation are established for the delta-shock solution. Finally, two typical examples are presented to illustrate the application of our results.

Citation: Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073
References:
[1]

F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Computing (Series on Advances in Mathematics for Applied Sciences), World Scientific, Singapore, 22 (1994), 171-190.  Google Scholar

[2]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328.  doi: 10.1137/S0036142997317353.  Google Scholar

[3]

Y. BrenierW. GangboG. Savare and M. Westdickenberg, The sticky particle dynamics with interactions, J. Math. Pures Appl., 99 (2013), 577-617.  doi: 10.1016/j.matpur.2012.09.013.  Google Scholar

[4]

G. Chen and H. Liu, Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350.  Google Scholar

[5]

G. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039.  Google Scholar

[6]

V. G. Danilov and V. M. Shelkovich, Dynamics of propagation and interaction of δ-shock waves in conservation law systems, J. Differential Equations, 221 (2005), 333-381.  doi: 10.1016/j.jde.2004.12.011.  Google Scholar

[7]

V. G. Danilov and V. M. Shelkovich, Delta-shock waves type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 63 (2005), 401-427.  doi: 10.1090/S0033-569X-05-00961-8.  Google Scholar

[8]

D. A. E. Daw and M. Nedeljkov, Shadow waves for pressureless gas balance laws, Appl. Math. Lett., 57 (2016), 54-59.  doi: 10.1016/j.aml.2016.01.004.  Google Scholar

[9]

Y. Ding and F. Huang, On a nonhomogeneous system of pressureless flow, Q. Appl. Math., 62 (2004), 509-528.  doi: 10.1090/qam/2086043.  Google Scholar

[10]

C. M. EdwardsS. D. HowisonH. Ockendon and J. R. Ockendon, Non-classical shallow water flows, IMA J. Appl. Math., 73 (2008), 137-157.  doi: 10.1093/imamat/hxm064.  Google Scholar

[11]

B. Engquist and O. Runborg, Multi-phase computations in geometrical optics, J. Comp. Appl. Math., 74 (1996), 175-192.  doi: 10.1016/0377-0427(96)00023-4.  Google Scholar

[12]

G. Faccanoni and A. Mangeney, Exact solution for granular flows, Int. J. Numer. Anal. Meth. Geomech., 37 (2012), 1408-1433.   Google Scholar

[13]

I. Gallagher and L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field, SIAM J. Math. Anal., 36 (2006), 1159-1176.  doi: 10.1137/S0036141003435540.  Google Scholar

[14]

L. GuoT. Li and G. Yin, The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term, Commun. Pure Appl. Anal., 16 (2017), 295-309.  doi: 10.3934/cpaa.2017014.  Google Scholar

[15]

L. GuoT. Li and G. Yin, The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term, J. Math. Anal. Appl., 455 (2017), 127-140.  doi: 10.1016/j.jmaa.2017.05.048.  Google Scholar

[16]

S. HaF. Huang and Y. Wang, A global unique solvability of entropic weak solution to the onedimensional pressureless Euler system with a flocking dissipation, J. Differential Equations, 257 (2014), 1333-1371.  doi: 10.1016/j.jde.2014.05.007.  Google Scholar

[17]

F. Huang, Weak solution to pressureless type system, Comm. Part. Diff. Eqs., 30 (2005), 283-304.  doi: 10.1081/PDE-200050026.  Google Scholar

[18]

F. Huang and Z. Wang, Well-posedness for pressureless flow, Comm. Math. Phys., 222 (2001), 117-146.  doi: 10.1007/s002200100506.  Google Scholar

[19]

H. Kalisch and D. Mitrovic, Singular solutions of a fully nonlinear 2 × 2 system of conservation laws, Proceedings of the Edinburgh Mathematical Society, 55 (2012), 711-729.  doi: 10.1017/S0013091512000065.  Google Scholar

[20]

H. Kalisch and D. Mitrovic, Singular solutions for the shallow-water equations, IMA J. Appl. Math., 77 (2012), 340-350.  doi: 10.1093/imamat/hxs014.  Google Scholar

[21]

B. L. Keyfitz and H. C. Kranzer, A viscosity approximation to a system of conservation laws with no classical Riemann solution, in Nonlinear Hyperbolic Problems, Springer, (1989), 185{197. doi: 10.1007/BFb0083875.  Google Scholar

[22]

D. J. Korchinski, Solution of a Riemann Problem for A 2 × 2 System of Conservation Laws Possessing No Classical Weak Solution, Ph.D thesis, Adelphi University, 1977.  Google Scholar

[23]

J. Li, T. Zhang and S. Yang, The two-dimensional Riemann problem in gas dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics 98, London-New York, Longman, 1998.  Google Scholar

[24]

Y. Li and Y. Cao, Second order large particle difference method, Sci. China Ser. A, 8 (1985), 1024-1035 (in Chinese). Google Scholar

[25]

D. Mitrovic and M. Nedeljkov, Delta-shock waves as a limit of shock waves, J. Hyperbolic Differ. Equ., 4 (2007), 629-653.  doi: 10.1142/S021989160700129X.  Google Scholar

[26]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM. J. Math. Anal., 40 (2008), 754-775.  doi: 10.1137/070704459.  Google Scholar

[27]

S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics, 199 (1989), 177-215.  doi: 10.1017/S0022112089000340.  Google Scholar

[28]

S. F. Shandarin and Ya. B. Zeldovich, The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys., 61 (1989), 185-220.  doi: 10.1103/RevModPhys.61.185.  Google Scholar

[29]

V. M. Shelkovich, The Riemann problem admitting δ, δ'-shocks, and vacuum states (the vanishing viscosity approach), J. Differential Equations, 231 (2006), 459-500.  doi: 10.1016/j.jde.2006.08.003.  Google Scholar

[30]

C. Shen, The Riemann problem for the pressureless Euler system with the Coulomb-like friction term, IMA J. Appl. Math., 81 (2016), 76-99.  doi: 10.1093/imamat/hxv028.  Google Scholar

[31]

C. Shen, The Riemann problem for the Chaplygin gas equations with a source term, Z. Angew. Math. Mech., 96 (2016), 681-695.  doi: 10.1002/zamm.201500015.  Google Scholar

[32]

W. Sheng and T. Zhang, The Riemann problem for transportation equation in gas dynamics, Mem. Am. Math. Soc., 137 (1999), 1-77.  doi: 10.1090/memo/0654.  Google Scholar

[33]

M. Sun, The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 342-353.  doi: 10.1016/j.cnsns.2015.12.013.  Google Scholar

[34]

D. Tan and T. Zhang, Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (Ⅰ) Four-J cases, Ⅱ. Initial data involving some rarefaction waves, J. Differential Equations, 111 (1994), 203-282.  doi: 10.1006/jdeq.1994.1082.  Google Scholar

[35]

D. TanT. Zhang and Y. Zheng, Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differential Equations, 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093.  Google Scholar

[36]

H. Yang, Riemann problems for a class of coupled hyperbolic systems of conservation laws, J. Differential Equations, 159 (1999), 447-484.  doi: 10.1006/jdeq.1999.3629.  Google Scholar

[37]

H. Yang, Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics, J. Math. Anal. Appl., 260 (2001), 18-35.  doi: 10.1006/jmaa.2000.7426.  Google Scholar

[38]

H. Yang and W. Sun, The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws, Nonlinear Analysis Series A: Theory, Methods & Applications, 67 (2007), 3041-3049.  doi: 10.1016/j.na.2006.09.057.  Google Scholar

[39]

H. Yang and Y. Zhang, New developments of delta shock waves and its applications in systems of conservation laws, J. Differential Equations, 252 (2012), 5951-5993.  doi: 10.1016/j.jde.2012.02.015.  Google Scholar

[40]

H. Yang and Y. Zhang, Delta shock waves with Dirac delta function in both components for systems of conservation laws, J. Differential Equations, 257 (2014), 4369-4402.  doi: 10.1016/j.jde.2014.08.009.  Google Scholar

[41]

W. E YuG. Rykov and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.   Google Scholar

[42]

Y. Zhang and Y. Zhang, Vanishing viscosity limit for Riemann solutions to a class of nonstrictly hyperbolic systems, Acta Applicandae Mathematicae, 155 (2018), 151-175.  doi: 10.1007/s10440-017-0149-7.  Google Scholar

show all references

References:
[1]

F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Computing (Series on Advances in Mathematics for Applied Sciences), World Scientific, Singapore, 22 (1994), 171-190.  Google Scholar

[2]

Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328.  doi: 10.1137/S0036142997317353.  Google Scholar

[3]

Y. BrenierW. GangboG. Savare and M. Westdickenberg, The sticky particle dynamics with interactions, J. Math. Pures Appl., 99 (2013), 577-617.  doi: 10.1016/j.matpur.2012.09.013.  Google Scholar

[4]

G. Chen and H. Liu, Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350.  Google Scholar

[5]

G. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039.  Google Scholar

[6]

V. G. Danilov and V. M. Shelkovich, Dynamics of propagation and interaction of δ-shock waves in conservation law systems, J. Differential Equations, 221 (2005), 333-381.  doi: 10.1016/j.jde.2004.12.011.  Google Scholar

[7]

V. G. Danilov and V. M. Shelkovich, Delta-shock waves type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 63 (2005), 401-427.  doi: 10.1090/S0033-569X-05-00961-8.  Google Scholar

[8]

D. A. E. Daw and M. Nedeljkov, Shadow waves for pressureless gas balance laws, Appl. Math. Lett., 57 (2016), 54-59.  doi: 10.1016/j.aml.2016.01.004.  Google Scholar

[9]

Y. Ding and F. Huang, On a nonhomogeneous system of pressureless flow, Q. Appl. Math., 62 (2004), 509-528.  doi: 10.1090/qam/2086043.  Google Scholar

[10]

C. M. EdwardsS. D. HowisonH. Ockendon and J. R. Ockendon, Non-classical shallow water flows, IMA J. Appl. Math., 73 (2008), 137-157.  doi: 10.1093/imamat/hxm064.  Google Scholar

[11]

B. Engquist and O. Runborg, Multi-phase computations in geometrical optics, J. Comp. Appl. Math., 74 (1996), 175-192.  doi: 10.1016/0377-0427(96)00023-4.  Google Scholar

[12]

G. Faccanoni and A. Mangeney, Exact solution for granular flows, Int. J. Numer. Anal. Meth. Geomech., 37 (2012), 1408-1433.   Google Scholar

[13]

I. Gallagher and L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field, SIAM J. Math. Anal., 36 (2006), 1159-1176.  doi: 10.1137/S0036141003435540.  Google Scholar

[14]

L. GuoT. Li and G. Yin, The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term, Commun. Pure Appl. Anal., 16 (2017), 295-309.  doi: 10.3934/cpaa.2017014.  Google Scholar

[15]

L. GuoT. Li and G. Yin, The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term, J. Math. Anal. Appl., 455 (2017), 127-140.  doi: 10.1016/j.jmaa.2017.05.048.  Google Scholar

[16]

S. HaF. Huang and Y. Wang, A global unique solvability of entropic weak solution to the onedimensional pressureless Euler system with a flocking dissipation, J. Differential Equations, 257 (2014), 1333-1371.  doi: 10.1016/j.jde.2014.05.007.  Google Scholar

[17]

F. Huang, Weak solution to pressureless type system, Comm. Part. Diff. Eqs., 30 (2005), 283-304.  doi: 10.1081/PDE-200050026.  Google Scholar

[18]

F. Huang and Z. Wang, Well-posedness for pressureless flow, Comm. Math. Phys., 222 (2001), 117-146.  doi: 10.1007/s002200100506.  Google Scholar

[19]

H. Kalisch and D. Mitrovic, Singular solutions of a fully nonlinear 2 × 2 system of conservation laws, Proceedings of the Edinburgh Mathematical Society, 55 (2012), 711-729.  doi: 10.1017/S0013091512000065.  Google Scholar

[20]

H. Kalisch and D. Mitrovic, Singular solutions for the shallow-water equations, IMA J. Appl. Math., 77 (2012), 340-350.  doi: 10.1093/imamat/hxs014.  Google Scholar

[21]

B. L. Keyfitz and H. C. Kranzer, A viscosity approximation to a system of conservation laws with no classical Riemann solution, in Nonlinear Hyperbolic Problems, Springer, (1989), 185{197. doi: 10.1007/BFb0083875.  Google Scholar

[22]

D. J. Korchinski, Solution of a Riemann Problem for A 2 × 2 System of Conservation Laws Possessing No Classical Weak Solution, Ph.D thesis, Adelphi University, 1977.  Google Scholar

[23]

J. Li, T. Zhang and S. Yang, The two-dimensional Riemann problem in gas dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics 98, London-New York, Longman, 1998.  Google Scholar

[24]

Y. Li and Y. Cao, Second order large particle difference method, Sci. China Ser. A, 8 (1985), 1024-1035 (in Chinese). Google Scholar

[25]

D. Mitrovic and M. Nedeljkov, Delta-shock waves as a limit of shock waves, J. Hyperbolic Differ. Equ., 4 (2007), 629-653.  doi: 10.1142/S021989160700129X.  Google Scholar

[26]

T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM. J. Math. Anal., 40 (2008), 754-775.  doi: 10.1137/070704459.  Google Scholar

[27]

S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics, 199 (1989), 177-215.  doi: 10.1017/S0022112089000340.  Google Scholar

[28]

S. F. Shandarin and Ya. B. Zeldovich, The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys., 61 (1989), 185-220.  doi: 10.1103/RevModPhys.61.185.  Google Scholar

[29]

V. M. Shelkovich, The Riemann problem admitting δ, δ'-shocks, and vacuum states (the vanishing viscosity approach), J. Differential Equations, 231 (2006), 459-500.  doi: 10.1016/j.jde.2006.08.003.  Google Scholar

[30]

C. Shen, The Riemann problem for the pressureless Euler system with the Coulomb-like friction term, IMA J. Appl. Math., 81 (2016), 76-99.  doi: 10.1093/imamat/hxv028.  Google Scholar

[31]

C. Shen, The Riemann problem for the Chaplygin gas equations with a source term, Z. Angew. Math. Mech., 96 (2016), 681-695.  doi: 10.1002/zamm.201500015.  Google Scholar

[32]

W. Sheng and T. Zhang, The Riemann problem for transportation equation in gas dynamics, Mem. Am. Math. Soc., 137 (1999), 1-77.  doi: 10.1090/memo/0654.  Google Scholar

[33]

M. Sun, The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 342-353.  doi: 10.1016/j.cnsns.2015.12.013.  Google Scholar

[34]

D. Tan and T. Zhang, Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (Ⅰ) Four-J cases, Ⅱ. Initial data involving some rarefaction waves, J. Differential Equations, 111 (1994), 203-282.  doi: 10.1006/jdeq.1994.1082.  Google Scholar

[35]

D. TanT. Zhang and Y. Zheng, Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differential Equations, 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093.  Google Scholar

[36]

H. Yang, Riemann problems for a class of coupled hyperbolic systems of conservation laws, J. Differential Equations, 159 (1999), 447-484.  doi: 10.1006/jdeq.1999.3629.  Google Scholar

[37]

H. Yang, Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics, J. Math. Anal. Appl., 260 (2001), 18-35.  doi: 10.1006/jmaa.2000.7426.  Google Scholar

[38]

H. Yang and W. Sun, The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws, Nonlinear Analysis Series A: Theory, Methods & Applications, 67 (2007), 3041-3049.  doi: 10.1016/j.na.2006.09.057.  Google Scholar

[39]

H. Yang and Y. Zhang, New developments of delta shock waves and its applications in systems of conservation laws, J. Differential Equations, 252 (2012), 5951-5993.  doi: 10.1016/j.jde.2012.02.015.  Google Scholar

[40]

H. Yang and Y. Zhang, Delta shock waves with Dirac delta function in both components for systems of conservation laws, J. Differential Equations, 257 (2014), 4369-4402.  doi: 10.1016/j.jde.2014.08.009.  Google Scholar

[41]

W. E YuG. Rykov and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380.   Google Scholar

[42]

Y. Zhang and Y. Zhang, Vanishing viscosity limit for Riemann solutions to a class of nonstrictly hyperbolic systems, Acta Applicandae Mathematicae, 155 (2018), 151-175.  doi: 10.1007/s10440-017-0149-7.  Google Scholar

Figure 1.  The Riemann solution of (1) and (2) when $u_-<0<u_+$ and $\beta>0$ for a given time $t$ before the time $(f^{-1}(0)-u_-)/\beta$. The left is the $(u, v)$-phase plane, and the right is the corresponding $(x, t)$-characteristic plane
Figure 2.  The delta-shock solution of (1) and (2) for $\beta>0$, where the propagation speed of delta shock wave is positive on the left and negative on the right when $t = 0$
[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[3]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[4]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[5]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[6]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[7]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[8]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[9]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[10]

Tommi Brander, Joonas Ilmavirta, Petteri Piiroinen, Teemu Tyni. Optimal recovery of a radiating source with multiple frequencies along one line. Inverse Problems & Imaging, 2020, 14 (6) : 967-983. doi: 10.3934/ipi.2020044

[11]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[12]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[13]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[14]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[15]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[16]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[17]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[18]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[19]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[20]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (148)
  • HTML views (239)
  • Cited by (5)

Other articles
by authors

[Back to Top]