# American Institute of Mathematical Sciences

• Previous Article
Existence and asymptotic behavior of ground state solutions for asymptotically linear Schrödinger equation with inverse square potential
• CPAA Home
• This Issue
• Next Article
Applications of generalized trigonometric functions with two parameters
May  2019, 18(3): 1523-1545. doi: 10.3934/cpaa.2019073

## Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term

 1 Department of Mathematics, Yunnan Normal University, Kunming 650500, China 2 College of Mathematics and Statistics, Xinyang Normal University, Xinyang 464000, China

* Corresponding author

Received  February 2017 Revised  February 2018 Published  November 2018

Fund Project: This work is supported by NSF of China (11501488), Yunnan Applied Basic Research Projects (2018FD015), the Scientific Research Foundation Project of Yunnan Education Department (2018JS150), Nan Hu Young Scholar Supporting Program of XYNU.

The Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term are studied. The Riemann solutions exactly include two kinds: delta-shock solutions and vacuum solutions. In order to see more clearly the influence of the source term on Riemann solutions, the generalized Rankine-Hugoniot relations of delta shock waves are derived in detail, and the position, propagation speed and strength of delta shock wave are given. It is also shown that, as the source term vanishes, the Riemann solutions converge to the corresponding ones of the homogeneous system, which is just the generalized zero-pressure flow model and contains the one-dimensional zero-pressure flow as a prototypical example. Furthermore, the generalized balance relations associated with the generalized mass and momentum transportation are established for the delta-shock solution. Finally, two typical examples are presented to illustrate the application of our results.

Citation: Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073
##### References:
 [1] F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Computing (Series on Advances in Mathematics for Applied Sciences), World Scientific, Singapore, 22 (1994), 171-190. [2] Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328.  doi: 10.1137/S0036142997317353. [3] Y. Brenier, W. Gangbo, G. Savare and M. Westdickenberg, The sticky particle dynamics with interactions, J. Math. Pures Appl., 99 (2013), 577-617.  doi: 10.1016/j.matpur.2012.09.013. [4] G. Chen and H. Liu, Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350. [5] G. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039. [6] V. G. Danilov and V. M. Shelkovich, Dynamics of propagation and interaction of δ-shock waves in conservation law systems, J. Differential Equations, 221 (2005), 333-381.  doi: 10.1016/j.jde.2004.12.011. [7] V. G. Danilov and V. M. Shelkovich, Delta-shock waves type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 63 (2005), 401-427.  doi: 10.1090/S0033-569X-05-00961-8. [8] D. A. E. Daw and M. Nedeljkov, Shadow waves for pressureless gas balance laws, Appl. Math. Lett., 57 (2016), 54-59.  doi: 10.1016/j.aml.2016.01.004. [9] Y. Ding and F. Huang, On a nonhomogeneous system of pressureless flow, Q. Appl. Math., 62 (2004), 509-528.  doi: 10.1090/qam/2086043. [10] C. M. Edwards, S. D. Howison, H. Ockendon and J. R. Ockendon, Non-classical shallow water flows, IMA J. Appl. Math., 73 (2008), 137-157.  doi: 10.1093/imamat/hxm064. [11] B. Engquist and O. Runborg, Multi-phase computations in geometrical optics, J. Comp. Appl. Math., 74 (1996), 175-192.  doi: 10.1016/0377-0427(96)00023-4. [12] G. Faccanoni and A. Mangeney, Exact solution for granular flows, Int. J. Numer. Anal. Meth. Geomech., 37 (2012), 1408-1433. [13] I. Gallagher and L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field, SIAM J. Math. Anal., 36 (2006), 1159-1176.  doi: 10.1137/S0036141003435540. [14] L. Guo, T. Li and G. Yin, The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term, Commun. Pure Appl. Anal., 16 (2017), 295-309.  doi: 10.3934/cpaa.2017014. [15] L. Guo, T. Li and G. Yin, The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term, J. Math. Anal. Appl., 455 (2017), 127-140.  doi: 10.1016/j.jmaa.2017.05.048. [16] S. Ha, F. Huang and Y. Wang, A global unique solvability of entropic weak solution to the onedimensional pressureless Euler system with a flocking dissipation, J. Differential Equations, 257 (2014), 1333-1371.  doi: 10.1016/j.jde.2014.05.007. [17] F. Huang, Weak solution to pressureless type system, Comm. Part. Diff. Eqs., 30 (2005), 283-304.  doi: 10.1081/PDE-200050026. [18] F. Huang and Z. Wang, Well-posedness for pressureless flow, Comm. Math. Phys., 222 (2001), 117-146.  doi: 10.1007/s002200100506. [19] H. Kalisch and D. Mitrovic, Singular solutions of a fully nonlinear 2 × 2 system of conservation laws, Proceedings of the Edinburgh Mathematical Society, 55 (2012), 711-729.  doi: 10.1017/S0013091512000065. [20] H. Kalisch and D. Mitrovic, Singular solutions for the shallow-water equations, IMA J. Appl. Math., 77 (2012), 340-350.  doi: 10.1093/imamat/hxs014. [21] B. L. Keyfitz and H. C. Kranzer, A viscosity approximation to a system of conservation laws with no classical Riemann solution, in Nonlinear Hyperbolic Problems, Springer, (1989), 185{197. doi: 10.1007/BFb0083875. [22] D. J. Korchinski, Solution of a Riemann Problem for A 2 × 2 System of Conservation Laws Possessing No Classical Weak Solution, Ph.D thesis, Adelphi University, 1977. [23] J. Li, T. Zhang and S. Yang, The two-dimensional Riemann problem in gas dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics 98, London-New York, Longman, 1998. [24] Y. Li and Y. Cao, Second order large particle difference method, Sci. China Ser. A, 8 (1985), 1024-1035 (in Chinese). [25] D. Mitrovic and M. Nedeljkov, Delta-shock waves as a limit of shock waves, J. Hyperbolic Differ. Equ., 4 (2007), 629-653.  doi: 10.1142/S021989160700129X. [26] T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM. J. Math. Anal., 40 (2008), 754-775.  doi: 10.1137/070704459. [27] S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics, 199 (1989), 177-215.  doi: 10.1017/S0022112089000340. [28] S. F. Shandarin and Ya. B. Zeldovich, The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys., 61 (1989), 185-220.  doi: 10.1103/RevModPhys.61.185. [29] V. M. Shelkovich, The Riemann problem admitting δ, δ'-shocks, and vacuum states (the vanishing viscosity approach), J. Differential Equations, 231 (2006), 459-500.  doi: 10.1016/j.jde.2006.08.003. [30] C. Shen, The Riemann problem for the pressureless Euler system with the Coulomb-like friction term, IMA J. Appl. Math., 81 (2016), 76-99.  doi: 10.1093/imamat/hxv028. [31] C. Shen, The Riemann problem for the Chaplygin gas equations with a source term, Z. Angew. Math. Mech., 96 (2016), 681-695.  doi: 10.1002/zamm.201500015. [32] W. Sheng and T. Zhang, The Riemann problem for transportation equation in gas dynamics, Mem. Am. Math. Soc., 137 (1999), 1-77.  doi: 10.1090/memo/0654. [33] M. Sun, The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 342-353.  doi: 10.1016/j.cnsns.2015.12.013. [34] D. Tan and T. Zhang, Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (Ⅰ) Four-J cases, Ⅱ. Initial data involving some rarefaction waves, J. Differential Equations, 111 (1994), 203-282.  doi: 10.1006/jdeq.1994.1082. [35] D. Tan, T. Zhang and Y. Zheng, Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differential Equations, 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093. [36] H. Yang, Riemann problems for a class of coupled hyperbolic systems of conservation laws, J. Differential Equations, 159 (1999), 447-484.  doi: 10.1006/jdeq.1999.3629. [37] H. Yang, Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics, J. Math. Anal. Appl., 260 (2001), 18-35.  doi: 10.1006/jmaa.2000.7426. [38] H. Yang and W. Sun, The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws, Nonlinear Analysis Series A: Theory, Methods & Applications, 67 (2007), 3041-3049.  doi: 10.1016/j.na.2006.09.057. [39] H. Yang and Y. Zhang, New developments of delta shock waves and its applications in systems of conservation laws, J. Differential Equations, 252 (2012), 5951-5993.  doi: 10.1016/j.jde.2012.02.015. [40] H. Yang and Y. Zhang, Delta shock waves with Dirac delta function in both components for systems of conservation laws, J. Differential Equations, 257 (2014), 4369-4402.  doi: 10.1016/j.jde.2014.08.009. [41] W. E Yu, G. Rykov and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380. [42] Y. Zhang and Y. Zhang, Vanishing viscosity limit for Riemann solutions to a class of nonstrictly hyperbolic systems, Acta Applicandae Mathematicae, 155 (2018), 151-175.  doi: 10.1007/s10440-017-0149-7.

show all references

##### References:
 [1] F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Computing (Series on Advances in Mathematics for Applied Sciences), World Scientific, Singapore, 22 (1994), 171-190. [2] Y. Brenier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328.  doi: 10.1137/S0036142997317353. [3] Y. Brenier, W. Gangbo, G. Savare and M. Westdickenberg, The sticky particle dynamics with interactions, J. Math. Pures Appl., 99 (2013), 577-617.  doi: 10.1016/j.matpur.2012.09.013. [4] G. Chen and H. Liu, Formation of delta-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids, SIAM J. Math. Anal., 34 (2003), 925-938.  doi: 10.1137/S0036141001399350. [5] G. Chen and H. Liu, Concentration and cavitation in the vanishing pressure limit of solutions to the Euler equations for nonisentropic fluids, Physica D, 189 (2004), 141-165.  doi: 10.1016/j.physd.2003.09.039. [6] V. G. Danilov and V. M. Shelkovich, Dynamics of propagation and interaction of δ-shock waves in conservation law systems, J. Differential Equations, 221 (2005), 333-381.  doi: 10.1016/j.jde.2004.12.011. [7] V. G. Danilov and V. M. Shelkovich, Delta-shock waves type solution of hyperbolic systems of conservation laws, Q. Appl. Math., 63 (2005), 401-427.  doi: 10.1090/S0033-569X-05-00961-8. [8] D. A. E. Daw and M. Nedeljkov, Shadow waves for pressureless gas balance laws, Appl. Math. Lett., 57 (2016), 54-59.  doi: 10.1016/j.aml.2016.01.004. [9] Y. Ding and F. Huang, On a nonhomogeneous system of pressureless flow, Q. Appl. Math., 62 (2004), 509-528.  doi: 10.1090/qam/2086043. [10] C. M. Edwards, S. D. Howison, H. Ockendon and J. R. Ockendon, Non-classical shallow water flows, IMA J. Appl. Math., 73 (2008), 137-157.  doi: 10.1093/imamat/hxm064. [11] B. Engquist and O. Runborg, Multi-phase computations in geometrical optics, J. Comp. Appl. Math., 74 (1996), 175-192.  doi: 10.1016/0377-0427(96)00023-4. [12] G. Faccanoni and A. Mangeney, Exact solution for granular flows, Int. J. Numer. Anal. Meth. Geomech., 37 (2012), 1408-1433. [13] I. Gallagher and L. Saint-Raymond, On pressureless gases driven by a strong inhomogeneous magnetic field, SIAM J. Math. Anal., 36 (2006), 1159-1176.  doi: 10.1137/S0036141003435540. [14] L. Guo, T. Li and G. Yin, The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term, Commun. Pure Appl. Anal., 16 (2017), 295-309.  doi: 10.3934/cpaa.2017014. [15] L. Guo, T. Li and G. Yin, The limit behavior of the Riemann solutions to the generalized Chaplygin gas equations with a source term, J. Math. Anal. Appl., 455 (2017), 127-140.  doi: 10.1016/j.jmaa.2017.05.048. [16] S. Ha, F. Huang and Y. Wang, A global unique solvability of entropic weak solution to the onedimensional pressureless Euler system with a flocking dissipation, J. Differential Equations, 257 (2014), 1333-1371.  doi: 10.1016/j.jde.2014.05.007. [17] F. Huang, Weak solution to pressureless type system, Comm. Part. Diff. Eqs., 30 (2005), 283-304.  doi: 10.1081/PDE-200050026. [18] F. Huang and Z. Wang, Well-posedness for pressureless flow, Comm. Math. Phys., 222 (2001), 117-146.  doi: 10.1007/s002200100506. [19] H. Kalisch and D. Mitrovic, Singular solutions of a fully nonlinear 2 × 2 system of conservation laws, Proceedings of the Edinburgh Mathematical Society, 55 (2012), 711-729.  doi: 10.1017/S0013091512000065. [20] H. Kalisch and D. Mitrovic, Singular solutions for the shallow-water equations, IMA J. Appl. Math., 77 (2012), 340-350.  doi: 10.1093/imamat/hxs014. [21] B. L. Keyfitz and H. C. Kranzer, A viscosity approximation to a system of conservation laws with no classical Riemann solution, in Nonlinear Hyperbolic Problems, Springer, (1989), 185{197. doi: 10.1007/BFb0083875. [22] D. J. Korchinski, Solution of a Riemann Problem for A 2 × 2 System of Conservation Laws Possessing No Classical Weak Solution, Ph.D thesis, Adelphi University, 1977. [23] J. Li, T. Zhang and S. Yang, The two-dimensional Riemann problem in gas dynamics, Pitman Monographs and Surveys in Pure and Applied Mathematics 98, London-New York, Longman, 1998. [24] Y. Li and Y. Cao, Second order large particle difference method, Sci. China Ser. A, 8 (1985), 1024-1035 (in Chinese). [25] D. Mitrovic and M. Nedeljkov, Delta-shock waves as a limit of shock waves, J. Hyperbolic Differ. Equ., 4 (2007), 629-653.  doi: 10.1142/S021989160700129X. [26] T. Nguyen and A. Tudorascu, Pressureless Euler/Euler-Poisson systems via adhesion dynamics and scalar conservation laws, SIAM. J. Math. Anal., 40 (2008), 754-775.  doi: 10.1137/070704459. [27] S. B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline, Journal of Fluid Mechanics, 199 (1989), 177-215.  doi: 10.1017/S0022112089000340. [28] S. F. Shandarin and Ya. B. Zeldovich, The large-scale structure of the universe: turbulence, intermittency, structures in a self-gravitating medium, Rev. Modern Phys., 61 (1989), 185-220.  doi: 10.1103/RevModPhys.61.185. [29] V. M. Shelkovich, The Riemann problem admitting δ, δ'-shocks, and vacuum states (the vanishing viscosity approach), J. Differential Equations, 231 (2006), 459-500.  doi: 10.1016/j.jde.2006.08.003. [30] C. Shen, The Riemann problem for the pressureless Euler system with the Coulomb-like friction term, IMA J. Appl. Math., 81 (2016), 76-99.  doi: 10.1093/imamat/hxv028. [31] C. Shen, The Riemann problem for the Chaplygin gas equations with a source term, Z. Angew. Math. Mech., 96 (2016), 681-695.  doi: 10.1002/zamm.201500015. [32] W. Sheng and T. Zhang, The Riemann problem for transportation equation in gas dynamics, Mem. Am. Math. Soc., 137 (1999), 1-77.  doi: 10.1090/memo/0654. [33] M. Sun, The exact Riemann solutions to the generalized Chaplygin gas equations with friction, Commun. Nonlinear Sci. Numer. Simul., 36 (2016), 342-353.  doi: 10.1016/j.cnsns.2015.12.013. [34] D. Tan and T. Zhang, Two-dimensional Riemann problem for a hyperbolic system of nonlinear conservation laws (Ⅰ) Four-J cases, Ⅱ. Initial data involving some rarefaction waves, J. Differential Equations, 111 (1994), 203-282.  doi: 10.1006/jdeq.1994.1082. [35] D. Tan, T. Zhang and Y. Zheng, Delta shock waves as limits of vanishing viscosity for hyperbolic systems of conservation laws, J. Differential Equations, 112 (1994), 1-32.  doi: 10.1006/jdeq.1994.1093. [36] H. Yang, Riemann problems for a class of coupled hyperbolic systems of conservation laws, J. Differential Equations, 159 (1999), 447-484.  doi: 10.1006/jdeq.1999.3629. [37] H. Yang, Generalized plane delta-shock waves for n-dimensional zero-pressure gas dynamics, J. Math. Anal. Appl., 260 (2001), 18-35.  doi: 10.1006/jmaa.2000.7426. [38] H. Yang and W. Sun, The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws, Nonlinear Analysis Series A: Theory, Methods & Applications, 67 (2007), 3041-3049.  doi: 10.1016/j.na.2006.09.057. [39] H. Yang and Y. Zhang, New developments of delta shock waves and its applications in systems of conservation laws, J. Differential Equations, 252 (2012), 5951-5993.  doi: 10.1016/j.jde.2012.02.015. [40] H. Yang and Y. Zhang, Delta shock waves with Dirac delta function in both components for systems of conservation laws, J. Differential Equations, 257 (2014), 4369-4402.  doi: 10.1016/j.jde.2014.08.009. [41] W. E Yu, G. Rykov and Ya. G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Comm. Math. Phys., 177 (1996), 349-380. [42] Y. Zhang and Y. Zhang, Vanishing viscosity limit for Riemann solutions to a class of nonstrictly hyperbolic systems, Acta Applicandae Mathematicae, 155 (2018), 151-175.  doi: 10.1007/s10440-017-0149-7.
The Riemann solution of (1) and (2) when $u_-<0<u_+$ and $\beta>0$ for a given time $t$ before the time $(f^{-1}(0)-u_-)/\beta$. The left is the $(u, v)$-phase plane, and the right is the corresponding $(x, t)$-characteristic plane
The delta-shock solution of (1) and (2) for $\beta>0$, where the propagation speed of delta shock wave is positive on the left and negative on the right when $t = 0$
 [1] Tong Li, Nitesh Mathur. Riemann problem for a non-strictly hyperbolic system in chemotaxis. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2173-2187. doi: 10.3934/dcdsb.2021128 [2] Anupam Sen, T. Raja Sekhar. Delta shock wave and wave interactions in a thin film of a perfectly soluble anti-surfactant solution. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2641-2653. doi: 10.3934/cpaa.2020115 [3] Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure and Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014 [4] Tatsien Li, Bopeng Rao, Yimin Wei. Generalized exact boundary synchronization for a coupled system of wave equations. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2893-2905. doi: 10.3934/dcds.2014.34.2893 [5] Qinglong Zhang. Delta waves and vacuum states in the vanishing pressure limit of Riemann solutions to Baer-Nunziato two-phase flow model. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3235-3258. doi: 10.3934/cpaa.2021104 [6] Huahui Li, Zhiqiang Shao. Delta shocks and vacuum states in vanishing pressure limits of solutions to the relativistic Euler equations for generalized Chaplygin gas. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2373-2400. doi: 10.3934/cpaa.2016041 [7] Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete and Continuous Dynamical Systems, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185 [8] Zhi-Qiang Shao. Lifespan of classical discontinuous solutions to the generalized nonlinear initial-boundary Riemann problem for hyperbolic conservation laws with small BV data: shocks and contact discontinuities. Communications on Pure and Applied Analysis, 2015, 14 (3) : 759-792. doi: 10.3934/cpaa.2015.14.759 [9] Xiaoqiang Dai, Wenke Li. Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem. Electronic Research Archive, 2021, 29 (6) : 4087-4098. doi: 10.3934/era.2021073 [10] Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure and Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127 [11] Takashi Narazaki. Global solutions to the Cauchy problem for the weakly coupled system of damped wave equations. Conference Publications, 2009, 2009 (Special) : 592-601. doi: 10.3934/proc.2009.2009.592 [12] Hui-Ling Li, Heng-Ling Wang, Xiao-Liu Wang. A quasilinear parabolic problem with a source term and a nonlocal absorption. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1945-1956. doi: 10.3934/cpaa.2018092 [13] Ben Muatjetjeja, Dimpho Millicent Mothibi, Chaudry Masood Khalique. Lie group classification a generalized coupled (2+1)-dimensional hyperbolic system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2803-2812. doi: 10.3934/dcdss.2020219 [14] Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems and Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004 [15] Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6257-6289. doi: 10.3934/dcds.2017271 [16] Rinaldo M. Colombo, Mauro Garavello. A Well Posed Riemann Problem for the $p$--System at a Junction. Networks and Heterogeneous Media, 2006, 1 (3) : 495-511. doi: 10.3934/nhm.2006.1.495 [17] Tae Gab Ha. On viscoelastic wave equation with nonlinear boundary damping and source term. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1543-1576. doi: 10.3934/cpaa.2010.9.1543 [18] Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001 [19] Xiaoli Feng, Meixia Zhao, Peijun Li, Xu Wang. An inverse source problem for the stochastic wave equation. Inverse Problems and Imaging, 2022, 16 (2) : 397-415. doi: 10.3934/ipi.2021055 [20] Hanchun Yang, Meimei Zhang, Qin Wang. Global solutions of shock reflection problem for the pressure gradient system. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3387-3428. doi: 10.3934/cpaa.2020150

2021 Impact Factor: 1.273