• Previous Article
    Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $
  • CPAA Home
  • This Issue
  • Next Article
    Effects of localized spatial variations on the uniform persistence and spreading speeds of time periodic two species competition systems
July  2019, 18(4): 1637-1662. doi: 10.3934/cpaa.2019078

New general decay results in a finite-memory bresse system

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P.O. Box 546, Dhahran 31261, Saudi Arabia

* Corresponding author

Received  April 2018 Revised  July 2018 Published  January 2019

Fund Project: This work is funded by KFUPM under Project IN161006.

This paper is concerned with the following memory-type Bresse system
$ \begin{array}{ll} \rho_1\varphi_{tt}-k_1(\varphi_x+\psi+lw)_x-lk_3(w_x-l\varphi) = 0,\\ \rho_2\psi_{tt}-k_2\psi_{xx}+k_1(\varphi_x+\psi+lw)+ \int_0^tg(t-s)\psi_{xx}(\cdot,s)ds = 0,\\ \rho_1w_{tt}-k_3(w_x-l\varphi)_x+lk_1(\varphi_x+\psi+lw) = 0, \end{array} $
with homogeneous Dirichlet-Neumann-Neumann boundary conditions, where
$ (x,t) \in (0,L) \times (0, \infty) $
,
$ g $
is a positive strictly increasing function satisfying, for some nonnegative functions
$ \xi $
and
$ H $
,
$ g'(t)\leq-\xi(t)H(g(t)),\qquad\forall t\geq0. $
Under appropriate conditions on
$ \xi $
and
$ H $
, we prove, in cases of equal and non-equal speeds of wave propagation, some new decay results that generalize and improve the recent results in the literature.
Citation: Salim A. Messaoudi, Jamilu Hashim Hassan. New general decay results in a finite-memory bresse system. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1637-1662. doi: 10.3934/cpaa.2019078
References:
[1]

M. O. AlvesL. H. FatoriM. A. Jorge Silva and R. N. Monteriro, Stability and optimality of decay rate for a weakly dissipative Bresse system, Math. Methods Appl. Sci., 38 (2015), 898-908.  doi: 10.1002/mma.3115.  Google Scholar

[2]

M. S. Alves, O. Vera, J. Muñoz-Rivera and A. Rambaud, Exponential stability to the Bresse system with boundary dissipation conditions, (2015), arXiv: 1506.01657. Google Scholar

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[4]

F. Dell'Oro, Asymptotic stability of thermoelastic systems of Bresse type, J. Differ. Equ., 258 (2015), 3902-3927.  doi: 10.1016/j.jde.2015.01.025.  Google Scholar

[5]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.  doi: 10.1016/j.aml.2011.09.067.  Google Scholar

[6]

A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402.  doi: 10.1002/mma.3228.  Google Scholar

[7]

A. Guesmia and S. A. Messaoudi, On the stabilization of Timoshenko systems with memory and different speeds of wave propagation, Appl. Math. Comput., 219 (2013), 9424-9437.  doi: 10.1016/j.amc.2013.03.105.  Google Scholar

[8]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems, SIAM J. Math. Anal., 49 (2017), 2468-2495.  doi: 10.1137/15M1039894.  Google Scholar

[9]

M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134-152.  doi: 10.1016/j.jmaa.2017.08.019.  Google Scholar

[10]

J. A. SorianoJ. E. Muñoz Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290.  doi: 10.1016/j.jmaa.2011.08.072.  Google Scholar

[11]

A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the bresse system, Evol. Equations Control Theory, 3 (2014), 713-738.  doi: 10.3934/eect.2014.3.713.  Google Scholar

[12]

A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1-17.  doi: 10.1063/1.3486094.  Google Scholar

show all references

References:
[1]

M. O. AlvesL. H. FatoriM. A. Jorge Silva and R. N. Monteriro, Stability and optimality of decay rate for a weakly dissipative Bresse system, Math. Methods Appl. Sci., 38 (2015), 898-908.  doi: 10.1002/mma.3115.  Google Scholar

[2]

M. S. Alves, O. Vera, J. Muñoz-Rivera and A. Rambaud, Exponential stability to the Bresse system with boundary dissipation conditions, (2015), arXiv: 1506.01657. Google Scholar

[3]

V. I. Arnol'd, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. doi: 10.1007/978-1-4757-2063-1.  Google Scholar

[4]

F. Dell'Oro, Asymptotic stability of thermoelastic systems of Bresse type, J. Differ. Equ., 258 (2015), 3902-3927.  doi: 10.1016/j.jde.2015.01.025.  Google Scholar

[5]

L. H. Fatori and R. N. Monteiro, The optimal decay rate for a weak dissipative Bresse system, Appl. Math. Lett., 25 (2012), 600-604.  doi: 10.1016/j.aml.2011.09.067.  Google Scholar

[6]

A. Guesmia and M. Kafini, Bresse system with infinite memories, Math. Methods Appl. Sci., 38 (2015), 2389-2402.  doi: 10.1002/mma.3228.  Google Scholar

[7]

A. Guesmia and S. A. Messaoudi, On the stabilization of Timoshenko systems with memory and different speeds of wave propagation, Appl. Math. Comput., 219 (2013), 9424-9437.  doi: 10.1016/j.amc.2013.03.105.  Google Scholar

[8]

T. F. Ma and R. N. Monteiro, Singular limit and long-time dynamics of Bresse systems, SIAM J. Math. Anal., 49 (2017), 2468-2495.  doi: 10.1137/15M1039894.  Google Scholar

[9]

M. I. Mustafa, General decay result for nonlinear viscoelastic equations, J. Math. Anal. Appl., 457 (2018), 134-152.  doi: 10.1016/j.jmaa.2017.08.019.  Google Scholar

[10]

J. A. SorianoJ. E. Muñoz Rivera and L. H. Fatori, Bresse system with indefinite damping, J. Math. Anal. Appl., 387 (2012), 284-290.  doi: 10.1016/j.jmaa.2011.08.072.  Google Scholar

[11]

A. Soufyane and B. Said-Houari, The effect of the wave speeds and the frictional damping terms on the decay rate of the bresse system, Evol. Equations Control Theory, 3 (2014), 713-738.  doi: 10.3934/eect.2014.3.713.  Google Scholar

[12]

A. Wehbe and W. Youssef, Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks, J. Math. Phys., 51 (2010), 1-17.  doi: 10.1063/1.3486094.  Google Scholar

[1]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[2]

Xiaoping Zhai, Yongsheng Li. Global large solutions and optimal time-decay estimates to the Korteweg system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1387-1413. doi: 10.3934/dcds.2020322

[3]

Yanan Li, Zhijian Yang, Na Feng. Uniform attractors and their continuity for the non-autonomous Kirchhoff wave models. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021018

[4]

Xing Wu, Keqin Su. Global existence and optimal decay rate of solutions to hyperbolic chemotaxis system in Besov spaces. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021002

[5]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[6]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[7]

Mokhtari Yacine. Boundary controllability and boundary time-varying feedback stabilization of the 1D wave equation in non-cylindrical domains. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021004

[8]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[9]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[10]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020400

[11]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[12]

Claude-Michel Brauner, Luca Lorenzi. Instability of free interfaces in premixed flame propagation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 575-596. doi: 10.3934/dcdss.2020363

[13]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[14]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[15]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[16]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[17]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[18]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[19]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[20]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (243)
  • HTML views (201)
  • Cited by (2)

Other articles
by authors

[Back to Top]