\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $

  • * Corresponding author

    * Corresponding author 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We consider the existence of positive solutions for the following fractional Schrödinger-Poisson system

    $ \begin{equation*} \begin{cases} \varepsilon^{2s}(-\Delta)^{s}u+V(x)u+\phi(x)u = K(x)f(u)+|u|^{2_{s}^{*}-2}u, \ \ & x\in \mathbb{R} ^3, \\ \varepsilon^{2s}(-\Delta)^{s}\phi = u^{2}, \ \ & x \in \mathbb{R} ^3, \end{cases} \end{equation*} $

    where $ s \in (\frac{3}{4}, 1) $, $ \varepsilon $ is a small and positive parameter, $ V $ and $ K $ are nonnegative potential functions. $ 2_{s}^{*} $ is the critical exponent with respect to fractional Sobolev embedding theorem. Under some suitable conditions on the nonlinearity $ f $ and potential functions $ V $ and $ K $, we prove that for $ \varepsilon $ small, the system has a positive ground state solution concentrating around a concrete set related to $ V $ and $ K $. This result generalizes the result for fractional Schrödinger-Poisson system with subcritical exponent by Yu et al. [39] to critical exponent. Moreover, when $ V $ attains its minimum and $ K $ attains its maximum, we also obtain multiple solutions by Ljusternik-Schnirelmann theory.

    Mathematics Subject Classification: Primary: 35J62; Secondary: 35J20, 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb R ^N $ via penalization method, Calc. Var. Partial Differential Equations, 55 (2016), 19pp. doi: 10.1007/s00526-016-0983-x.
    [2] A. Ambrosetti, On Schrödinger-Poisson systems, Milan J. Math., 76 (2008), 257-274.  doi: 10.1007/s00032-008-0094-z.
    [3] A. AzzolliniP. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791.  doi: 10.1016/j.anihpc.2009.11.012.
    [4] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.
    [5] V. Benci and G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology, Calc. Var. Partial Differential Equations, 2 (1994), 29-48.  doi: 10.1007/BF01234314.
    [6] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.
    [7] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.  doi: 10.1080/03605300600987306.
    [8] K. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhäuser Boston, Inc., Boston, MA, 1993. doi: 10.1007/978-1-4612-0385-8.
    [9] W. ChoiS. Kim and K.-A. Lee, Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian, J. Funct. Anal., 266 (2014), 6531-6598.  doi: 10.1016/j.jfa.2014.02.029.
    [10] T. D'Aprile and J. Wei, Standing waves in the Maxwell-Schrödinger equation and an optimal configuration problem, Calc. Var. Partial Differential Equations, 25 (2006), 105-137.  doi: 10.1007/s00526-005-0342-9.
    [11] J. D'avilaM. Del Pino and J. Wei, Concentrating standing waves for the fractional nonlinear Schrödinger equation, J. Differential Equations, 256 (2014), 858-892.  doi: 10.1016/j.jde.2013.10.006.
    [12] Y. Ding and X. Liu, Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities, Manuscripta Math., 140 (2013), 51-82.  doi: 10.1007/s00229-011-0530-1.
    [13] S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critial growth in the whole of $ \mathbb R ^N$, Edizioni della Normale Pisa, 15 (2017), viii+152. doi: 10.1007/978-88-7642-601-8.
    [14] S. DipierroG. Palatucci and E. Valdinoci, Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian, Mathematics, 68 (2013), 201-216.  doi: 10.4418/2013.68.1.15.
    [15] M. FallF. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961.  doi: 10.1088/0951-7715/28/6/1937.
    [16] P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A, 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.
    [17] X. He, Multiplicity and concentration of positive solutions for the Schrödinger-Poisson equations, Z. Angew. Math. Phys., 62 (2011), 869-889.  doi: 10.1007/s00033-011-0120-9.
    [18] X. He and W. Zou, Existence and concentration of ground states for Schrödinger-Poisson equations with critical growth, J. Math. Phys., 53 (2012), 023702, 19 pp. doi: 10.1063/1.3683156.
    [19] X. He and W. Zou, Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities, Calc. Var. Partial Differential Equations, 55 (2016), 39 pp. doi: 10.1007/s00526-016-1045-0.
    [20] Y. He and G. Li, Standing waves for a class of Schrödinger-Poisson equations in $ \mathbb R ^3$ involving critical Sobolev exponents, Ann. Acad. Sci. Fenn. Math., 40 (2015), 729-766.  doi: 10.5186/aasfm.2015.4041.
    [21] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson system with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.
    [22] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.
    [23] N. Laskin, Fractional Schrödinger equation, Phys. Rev. E (3), 66 (2002), 56-108. doi: 10.1103/PhysRevE.66.056108.
    [24] G. LiS. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.  doi: 10.1142/S0219199710004068.
    [25] E. H. Lieb and M. Loss, Analysis, 2nd edition, Graduate Studies in Mathematics, American Mathematical Society, Providence, Rhoad Island, 2001. doi: 10.1002/zamm.200490006.
    [26] Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var., 23 (2017), 1515-1542.  doi: 10.1051/cocv/2016063.
    [27] E. D. NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [28] G. Palatucci and A. Pisante, Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differential Equations, 50 (2014), 799-829.  doi: 10.1007/s00526-013-0656-y.
    [29] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.
    [30] D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of potential, Rev. Mat. Iberoamericana, 27 (2011), 253-271.  doi: 10.4171/RMI/635.
    [31] R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.
    [32] X. Shang and J. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207.  doi: 10.1088/0951-7715/27/2/187.
    [33] X. Shang and J. Zhang, Existence and concentration of positive solutions for fractional nonlinear Schrödinger equation with critical growth, J. Math. Phys., 58 (2017), 081502, 18 pp. doi: 10.1063/1.4996578.
    [34] L. Silvestre, Regularity of the obstable problem for a fractional power of the Laplace operator, Commun. Pure Appl. Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.
    [35] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.  doi: 10.1016/j.jde.2016.05.022.
    [36] J. WangL. TianJ. Xu and F. Zhao, Existence and concentration of positive solutions for semilinear Schrödinger-Poisson systems in $ \mathbb R ^3$, Calc. Var. Partial Differential Equations, 48 (2013), 243-273.  doi: 10.1007/s00526-012-0548-6.
    [37] Z. Wang and H. Zhou, Positive solution for a nonlinear stationary Schrödinger-Poisson system in $ \mathbb R ^3$, Discrete Contin. Dyn. Syst., 18 (2007), 809-816.  doi: 10.3934/dcds.2007.18.809.
    [38] W. Willem, Minimax Theorems, Birkhäuser, Basel, 1996. doi: 10.1007/978-1-4612-4146-1.
    [39] Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differential Equations, 56 (2017), 25pp. doi: 10.1007/s00526-017-1199-4.
    [40] J. Zhang, The existence and concentration of positive solutions for a nonlinear Schrödinger-Poisson system with critical growth, J. Math. Phys., 55 (2014), 031507. doi: 10.1063/1.4868617.
    [41] J. Zhang, Ground state and multiple solutions for Schrödinger-Poisson equations with critical nonlinearity, J. Math. Anal. Appl., 440 (2016), 466-482.  doi: 10.1016/j.jmaa.2016.03.062.
    [42] J. ZhangM. do Ó João and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30.  doi: 10.1515/ans-2015-5024.
    [43] X. ZhangS. Ma and Q. Xie, Bound state solutions of Schrödinger-Poisson system with critical exponent, Discrete Contin. Dyn. Syst., 37 (2017), 605-625.  doi: 10.3934/dcds.2017025.
  • 加载中
SHARE

Article Metrics

HTML views(2512) PDF downloads(374) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return