• Previous Article
    Scattering results for Dirac Hartree-type equations with small initial data
  • CPAA Home
  • This Issue
  • Next Article
    Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $
July  2019, 18(4): 1695-1709. doi: 10.3934/cpaa.2019080

Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium

1. 

IMAS – CONICET, Universidad de Buenos Aires, Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria - Pabellón I - (C1428EGA), Buenos Aires, Argentina

2. 

Universidad de Chile, Departamento de Matemáticas, Facultad de Ciencias, Casilla 653, Santiago, Chile

* Corresponding author

Received  May 2018 Revised  August 2018 Published  January 2019

Fund Project: The first author is supported by projects CONICET PIP 11220130100006CO and UBACyT 20020160100002BA.

Small non-autonomous perturbations around an equilibrium of a nonlinear delayed system are studied. Under appropriate assumptions, it is shown that the number of $ T $-periodic solutions lying inside a bounded domain $ \Omega\subset \mathbb{R}^{N} $ is, generically, at least $ |\chi \pm 1|+1 $, where $ \chi $ denotes the Euler characteristic of $ \Omega $. Moreover, some connections between the associated fixed point operator and the Poincaré operator are explored.

Citation: Pablo Amster, Mariel Paula Kuna, Gonzalo Robledo. Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1695-1709. doi: 10.3934/cpaa.2019080
References:
[1]

R. F. Brown, A Topological Introduction to Nonlinear Analysis, First edition, Birkhäuser, Boston, 2004. doi: 10.1007/978-0-8176-8124-1.  Google Scholar

[2]

J. Haddad, Topología y geometría aplicada al estudio de algunas ecuaciones diferenciales de segundo orden, (Spanish) [Topology and Geometry Applied to the Study of Some Second Order Differential Equations] Ph.D thesis, Universidad de Buenos Aires, Argentina, 2012. Available from: cms.dm.uba.ar/academico/carreras/doctorado/2012/tesisHaddad.pdf Google Scholar

[3]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer–Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[4]

H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann., 96 (1927), 225-250.  doi: 10.1007/BF01209164.  Google Scholar

[5]

R. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, American Mathematical Society, Providence RI, 1994. doi: 10.1090/gsm/004.  Google Scholar

[6]

J. Liu, G. N'Guérékata and Nguyen Van Minh, Topics on Stability and Periodicity in Abstract Differential Equations, World Scientific, Singapore, 2008. doi: 10.1142/9789812818249.  Google Scholar

[7]

M. A. Krasnoselskii, The Operator of Translation along the Trajectories of Differential Equations, American Mathematical Society, Providence RI, 1968.  Google Scholar

[8]

M. A. Krasnoselskii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, SpringerVerlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.  Google Scholar

[9] J. Milnor, Topology from a Differential Viewpoint, University of Virginia Press, 1965.   Google Scholar
[10]

R. Ortega, Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc., 42 (1990), 505-516.  doi: 10.1112/jlms/s2-42.3.505.  Google Scholar

[11]

M. Pinto, Pseudo-almost periodic solutions of neutral integral and differential equations with applications, Nonlinear Anal., 72 (2010), 4377-4383.  doi: 10.1016/j.na.2009.12.042.  Google Scholar

[12]

S. Smale, An infinite dimensional version of Sard's theorem, American Journal of Mathematics, 87 (1965), 861-866.  doi: 10.2307/2373250.  Google Scholar

[13]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer–Verlag, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[14]

F. Wecken, Fixpunktklassen Ⅲ: Mindestzahlen von Fixpunkten, Math. Ann., 118 (1941/1943), 544-577.  doi: 10.1007/BF01487386.  Google Scholar

show all references

References:
[1]

R. F. Brown, A Topological Introduction to Nonlinear Analysis, First edition, Birkhäuser, Boston, 2004. doi: 10.1007/978-0-8176-8124-1.  Google Scholar

[2]

J. Haddad, Topología y geometría aplicada al estudio de algunas ecuaciones diferenciales de segundo orden, (Spanish) [Topology and Geometry Applied to the Study of Some Second Order Differential Equations] Ph.D thesis, Universidad de Buenos Aires, Argentina, 2012. Available from: cms.dm.uba.ar/academico/carreras/doctorado/2012/tesisHaddad.pdf Google Scholar

[3]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer–Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.  Google Scholar

[4]

H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann., 96 (1927), 225-250.  doi: 10.1007/BF01209164.  Google Scholar

[5]

R. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, American Mathematical Society, Providence RI, 1994. doi: 10.1090/gsm/004.  Google Scholar

[6]

J. Liu, G. N'Guérékata and Nguyen Van Minh, Topics on Stability and Periodicity in Abstract Differential Equations, World Scientific, Singapore, 2008. doi: 10.1142/9789812818249.  Google Scholar

[7]

M. A. Krasnoselskii, The Operator of Translation along the Trajectories of Differential Equations, American Mathematical Society, Providence RI, 1968.  Google Scholar

[8]

M. A. Krasnoselskii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, SpringerVerlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.  Google Scholar

[9] J. Milnor, Topology from a Differential Viewpoint, University of Virginia Press, 1965.   Google Scholar
[10]

R. Ortega, Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc., 42 (1990), 505-516.  doi: 10.1112/jlms/s2-42.3.505.  Google Scholar

[11]

M. Pinto, Pseudo-almost periodic solutions of neutral integral and differential equations with applications, Nonlinear Anal., 72 (2010), 4377-4383.  doi: 10.1016/j.na.2009.12.042.  Google Scholar

[12]

S. Smale, An infinite dimensional version of Sard's theorem, American Journal of Mathematics, 87 (1965), 861-866.  doi: 10.2307/2373250.  Google Scholar

[13]

H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer–Verlag, New York, 2011. doi: 10.1007/978-1-4419-7646-8.  Google Scholar

[14]

F. Wecken, Fixpunktklassen Ⅲ: Mindestzahlen von Fixpunkten, Math. Ann., 118 (1941/1943), 544-577.  doi: 10.1007/BF01487386.  Google Scholar

[1]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[2]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[3]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[6]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[7]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[8]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[9]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[10]

John Mallet-Paret, Roger D. Nussbaum. Asymptotic homogenization for delay-differential equations and a question of analyticity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3789-3812. doi: 10.3934/dcds.2020044

[11]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[12]

Jann-Long Chern, Sze-Guang Yang, Zhi-You Chen, Chih-Her Chen. On the family of non-topological solutions for the elliptic system arising from a product Abelian gauge field theory. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3291-3304. doi: 10.3934/dcds.2020127

[13]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[14]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[15]

Haoyu Li, Zhi-Qiang Wang. Multiple positive solutions for coupled Schrödinger equations with perturbations. Communications on Pure & Applied Analysis, 2021, 20 (2) : 867-884. doi: 10.3934/cpaa.2020294

[16]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021005

[17]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[18]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[19]

Amira M. Boughoufala, Ahmed Y. Abdallah. Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1549-1563. doi: 10.3934/dcdsb.2020172

[20]

Rong Chen, Shihang Pan, Baoshuai Zhang. Global conservative solutions for a modified periodic coupled Camassa-Holm system. Electronic Research Archive, 2021, 29 (1) : 1691-1708. doi: 10.3934/era.2020087

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (82)
  • HTML views (178)
  • Cited by (0)

[Back to Top]