\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multiple solutions for periodic perturbations of a delayed autonomous system near an equilibrium

  • * Corresponding author

    * Corresponding author 
The first author is supported by projects CONICET PIP 11220130100006CO and UBACyT 20020160100002BA.
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • Small non-autonomous perturbations around an equilibrium of a nonlinear delayed system are studied. Under appropriate assumptions, it is shown that the number of $ T $-periodic solutions lying inside a bounded domain $ \Omega\subset \mathbb{R}^{N} $ is, generically, at least $ |\chi \pm 1|+1 $, where $ \chi $ denotes the Euler characteristic of $ \Omega $. Moreover, some connections between the associated fixed point operator and the Poincaré operator are explored.

    Mathematics Subject Classification: Primary: 34K13, 47H10; Secondary: 47H11.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. F. Brown, A Topological Introduction to Nonlinear Analysis, First edition, Birkhäuser, Boston, 2004. doi: 10.1007/978-0-8176-8124-1.
    [2] J. Haddad, Topología y geometría aplicada al estudio de algunas ecuaciones diferenciales de segundo orden, (Spanish) [Topology and Geometry Applied to the Study of Some Second Order Differential Equations] Ph.D thesis, Universidad de Buenos Aires, Argentina, 2012. Available from: cms.dm.uba.ar/academico/carreras/doctorado/2012/tesisHaddad.pdf
    [3] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer–Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7.
    [4] H. Hopf, Vektorfelder in n-dimensionalen Mannigfaltigkeiten, Math. Ann., 96 (1927), 225-250.  doi: 10.1007/BF01209164.
    [5] R. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, American Mathematical Society, Providence RI, 1994. doi: 10.1090/gsm/004.
    [6] J. Liu, G. N'Guérékata and Nguyen Van Minh, Topics on Stability and Periodicity in Abstract Differential Equations, World Scientific, Singapore, 2008. doi: 10.1142/9789812818249.
    [7] M. A. Krasnoselskii, The Operator of Translation along the Trajectories of Differential Equations, American Mathematical Society, Providence RI, 1968.
    [8] M. A. Krasnoselskii and P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis, SpringerVerlag, Berlin, 1984. doi: 10.1007/978-3-642-69409-7.
    [9] J. MilnorTopology from a Differential Viewpoint, University of Virginia Press, 1965. 
    [10] R. Ortega, Topological degree and stability of periodic solutions for certain differential equations, J. London Math. Soc., 42 (1990), 505-516.  doi: 10.1112/jlms/s2-42.3.505.
    [11] M. Pinto, Pseudo-almost periodic solutions of neutral integral and differential equations with applications, Nonlinear Anal., 72 (2010), 4377-4383.  doi: 10.1016/j.na.2009.12.042.
    [12] S. Smale, An infinite dimensional version of Sard's theorem, American Journal of Mathematics, 87 (1965), 861-866.  doi: 10.2307/2373250.
    [13] H. L. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer–Verlag, New York, 2011. doi: 10.1007/978-1-4419-7646-8.
    [14] F. Wecken, Fixpunktklassen Ⅲ: Mindestzahlen von Fixpunkten, Math. Ann., 118 (1941/1943), 544-577.  doi: 10.1007/BF01487386.
  • 加载中
SHARE

Article Metrics

HTML views(2276) PDF downloads(195) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return