July  2019, 18(4): 1735-1767. doi: 10.3934/cpaa.2019082

Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition

1. 

Department of Mathematics, Faculty of Education, Mie University, 1577 Kurima-machiya-cho Tsu, Mie Prefecture 514-8507, Japan

2. 

Department of Applied Mathematics, Donghua University, Shanghai 201620, China

* Corresponding author

Received  May 2018 Revised  November 2018 Published  January 2019

We give an alternative proof of the global existence result originally due to Hidano and Yokoyama for the Cauchy problem for a system of quasi-linear wave equations in three space dimensions satisfying the weak null condition. The feature of the new proof lies in that it never uses the Lorentz boost operator in the energy integral argument. The proof presented here has an advantage over the former one in that the assumption of compactness of the support of data can be eliminated and the amount of regularity of data can be lowered in a straightforward manner. A recent result of Zha for the scalar unknowns is also refined.

Citation: Kunio Hidano, Dongbing Zha. Remarks on a system of quasi-linear wave equations in 3D satisfying the weak null condition. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1735-1767. doi: 10.3934/cpaa.2019082
References:
[1]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145 (2001), 597-618.  doi: 10.1007/s002220100165.  Google Scholar

[2]

S. Alinhac, Geometric Analysis of Hyperbolic Differential Equations: An Introduction, London Mathematical Society Lecture Note Series, 374. Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9781139107198.  Google Scholar

[3]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.  Google Scholar

[4]

J. Ginibre and G. Velo, Conformal invariance and time decay for nonlinear wave equations. I, Ann. Inst. H. Poincaré Phys. Théor., 47 (1987), 221-261.   Google Scholar

[5]

K. Hidano, Regularity and lifespan of small solutions to systems of quasi-linear wave equations with multiple speeds, I: almost global existence, in Harmonic Analysis and Nonlinear Partial Differential Equations (eds. H. Kubo and H. Takaoka), RIMS Kôkyûroku Bessatsu B65, Res. Inst. Math. Sci. (RIMS), Kyoto, (2017), 37–61.  Google Scholar

[6]

K. HidanoC. Wang and K. Yokoyama, On almost global existence and local well posedness for some 3-D quasi-linear wave equations, Adv. Differential Equations, 17 (2012), 267-306.   Google Scholar

[7]

K. Hidano and K. Yokoyama, Global existence for a system of quasi-linear wave equations in 3D satisfying the weak null condition, International Mathematics Research Notices. IMRN, to appear., doi: 10.1093/imrn/rny024.  Google Scholar

[8]

L. Hórmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin), 26. Springer-Verlag, Berlin, 1997.  Google Scholar

[9]

F. John, Nonlinear Wave Equations, Formation of Singularities, Seventh Annual Pitcher Lectures delivered at Lehigh University, Bethlehem, Pennsylvania, April 1989. University Lecture Series, 2. American Mathematical Society, Providence, RI, 1990. doi: 10.1090/ulect/002.  Google Scholar

[10]

F. Pusateri and J. Shatah, Space-time resonances and the null condition for first-order systems of wave equations, Comm. Pure Appl. Math., 66 (2013), 1495-1540.  doi: 10.1002/cpa.21461.  Google Scholar

[11]

M. KeelH. F. Smith and C. D. Sogge, Almost global existence for quasilinear wave equations in three space dimensions, J. Amer. Math. Soc., 17 (2004), 109-153.  doi: 10.1090/S0894-0347-03-00443-0.  Google Scholar

[12]

S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space ${\mathbb R}^{n+1}$, Comm. Pure Appl. Math., 40 (1987), 111-117.  doi: 10.1002/cpa.3160400105.  Google Scholar

[13]

S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math., 49 (1996), 307-321.  doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.  Google Scholar

[14]

H. Lindblad and I. Rodnianski, The weak null condition for Einstein's equations, C. R. Math. Acad. Sci. Paris, 336 (2003), 901-906.  doi: 10.1016/S1631-073X(03)00231-0.  Google Scholar

[15]

J. MetcalfeM. Nakamura and C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japan. J. Math. (N.S.), 31 (2005), 391-472.  doi: 10.4099/math1924.31.391.  Google Scholar

[16]

J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations, Invent. Math., 159 (2005), 75-117.  doi: 10.1007/s00222-004-0383-2.  Google Scholar

[17]

J. Metcalfe and C. D. Sogge, Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188-209.  doi: 10.1137/050627149.  Google Scholar

[18]

R. Racke, Lectures on Nonlinear Evolution Equations. Initial Value Problems, Aspects of Mathematics, E19. Friedr. Vieweg & Sohn, Braunschweig, 1992. doi: 10.1007/978-3-663-10629-6.  Google Scholar

[19]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z., 191 (1986), 165-199.  doi: 10.1007/BF01164023.  Google Scholar

[20]

T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2), 151 (2000), 849–874. doi: 10.2307/121050.  Google Scholar

[21]

T. C. Sideris and S. -Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal., 33 (2001), 477-488.  doi: 10.1137/S0036141000378966.  Google Scholar

[22]

C. D. Sogge, Global existence for nonlinear wave equations with multiple speeds, in Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001. eds. W. Beckner, A. Nagel, A. Seeger and H.F. Smith), 353–366, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003. doi: 10.1090/conm/320.  Google Scholar

[23]

J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation. With an appendix by Igor Rodnianski, Int. Math. Res. Not., 2005, 187–231. doi: 10.1155/IMRN.2005.187.  Google Scholar

[24]

K. Yokoyama, Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions, J. Math. Soc. Japan, 52 (2000), 609-632.  doi: 10.2969/jmsj/05230609.  Google Scholar

[25]

D. Zha, Some remarks on quasilinear wave equations with null condition in 3-D, Math. Methods Appl. Sci., 39 (2016), 4484-4495.  doi: 10.1002/mma.3876.  Google Scholar

show all references

References:
[1]

S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145 (2001), 597-618.  doi: 10.1007/s002220100165.  Google Scholar

[2]

S. Alinhac, Geometric Analysis of Hyperbolic Differential Equations: An Introduction, London Mathematical Society Lecture Note Series, 374. Cambridge University Press, Cambridge, 2010. doi: 10.1017/CBO9781139107198.  Google Scholar

[3]

A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.  Google Scholar

[4]

J. Ginibre and G. Velo, Conformal invariance and time decay for nonlinear wave equations. I, Ann. Inst. H. Poincaré Phys. Théor., 47 (1987), 221-261.   Google Scholar

[5]

K. Hidano, Regularity and lifespan of small solutions to systems of quasi-linear wave equations with multiple speeds, I: almost global existence, in Harmonic Analysis and Nonlinear Partial Differential Equations (eds. H. Kubo and H. Takaoka), RIMS Kôkyûroku Bessatsu B65, Res. Inst. Math. Sci. (RIMS), Kyoto, (2017), 37–61.  Google Scholar

[6]

K. HidanoC. Wang and K. Yokoyama, On almost global existence and local well posedness for some 3-D quasi-linear wave equations, Adv. Differential Equations, 17 (2012), 267-306.   Google Scholar

[7]

K. Hidano and K. Yokoyama, Global existence for a system of quasi-linear wave equations in 3D satisfying the weak null condition, International Mathematics Research Notices. IMRN, to appear., doi: 10.1093/imrn/rny024.  Google Scholar

[8]

L. Hórmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin), 26. Springer-Verlag, Berlin, 1997.  Google Scholar

[9]

F. John, Nonlinear Wave Equations, Formation of Singularities, Seventh Annual Pitcher Lectures delivered at Lehigh University, Bethlehem, Pennsylvania, April 1989. University Lecture Series, 2. American Mathematical Society, Providence, RI, 1990. doi: 10.1090/ulect/002.  Google Scholar

[10]

F. Pusateri and J. Shatah, Space-time resonances and the null condition for first-order systems of wave equations, Comm. Pure Appl. Math., 66 (2013), 1495-1540.  doi: 10.1002/cpa.21461.  Google Scholar

[11]

M. KeelH. F. Smith and C. D. Sogge, Almost global existence for quasilinear wave equations in three space dimensions, J. Amer. Math. Soc., 17 (2004), 109-153.  doi: 10.1090/S0894-0347-03-00443-0.  Google Scholar

[12]

S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space ${\mathbb R}^{n+1}$, Comm. Pure Appl. Math., 40 (1987), 111-117.  doi: 10.1002/cpa.3160400105.  Google Scholar

[13]

S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave equations in 3D, Comm. Pure Appl. Math., 49 (1996), 307-321.  doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.  Google Scholar

[14]

H. Lindblad and I. Rodnianski, The weak null condition for Einstein's equations, C. R. Math. Acad. Sci. Paris, 336 (2003), 901-906.  doi: 10.1016/S1631-073X(03)00231-0.  Google Scholar

[15]

J. MetcalfeM. Nakamura and C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japan. J. Math. (N.S.), 31 (2005), 391-472.  doi: 10.4099/math1924.31.391.  Google Scholar

[16]

J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of quasilinear wave equations, Invent. Math., 159 (2005), 75-117.  doi: 10.1007/s00222-004-0383-2.  Google Scholar

[17]

J. Metcalfe and C. D. Sogge, Long-time existence of quasilinear wave equations exterior to star-shaped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188-209.  doi: 10.1137/050627149.  Google Scholar

[18]

R. Racke, Lectures on Nonlinear Evolution Equations. Initial Value Problems, Aspects of Mathematics, E19. Friedr. Vieweg & Sohn, Braunschweig, 1992. doi: 10.1007/978-3-663-10629-6.  Google Scholar

[19]

Y. Shibata and Y. Tsutsumi, On a global existence theorem of small amplitude solutions for nonlinear wave equations in an exterior domain, Math. Z., 191 (1986), 165-199.  doi: 10.1007/BF01164023.  Google Scholar

[20]

T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2), 151 (2000), 849–874. doi: 10.2307/121050.  Google Scholar

[21]

T. C. Sideris and S. -Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal., 33 (2001), 477-488.  doi: 10.1137/S0036141000378966.  Google Scholar

[22]

C. D. Sogge, Global existence for nonlinear wave equations with multiple speeds, in Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001. eds. W. Beckner, A. Nagel, A. Seeger and H.F. Smith), 353–366, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003. doi: 10.1090/conm/320.  Google Scholar

[23]

J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation. With an appendix by Igor Rodnianski, Int. Math. Res. Not., 2005, 187–231. doi: 10.1155/IMRN.2005.187.  Google Scholar

[24]

K. Yokoyama, Global existence of classical solutions to systems of wave equations with critical nonlinearity in three space dimensions, J. Math. Soc. Japan, 52 (2000), 609-632.  doi: 10.2969/jmsj/05230609.  Google Scholar

[25]

D. Zha, Some remarks on quasilinear wave equations with null condition in 3-D, Math. Methods Appl. Sci., 39 (2016), 4484-4495.  doi: 10.1002/mma.3876.  Google Scholar

[1]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[2]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[3]

Yang Liu. Global existence and exponential decay of strong solutions to the cauchy problem of 3D density-dependent Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1291-1303. doi: 10.3934/dcdsb.2020163

[4]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[5]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[6]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[7]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[8]

Juhua Shi, Feida Jiang. The degenerate Monge-Ampère equations with the Neumann condition. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020297

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Zhihua Liu, Yayun Wu, Xiangming Zhang. Existence of periodic wave trains for an age-structured model with diffusion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021009

[11]

José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar. Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29 (1) : 1783-1801. doi: 10.3934/era.2020091

[12]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[13]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[14]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[15]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[16]

Jingrui Sun, Hanxiao Wang. Mean-field stochastic linear-quadratic optimal control problems: Weak closed-loop solvability. Mathematical Control & Related Fields, 2021, 11 (1) : 47-71. doi: 10.3934/mcrf.2020026

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[19]

Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29 (1) : 1625-1639. doi: 10.3934/era.2020083

[20]

Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao. Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020126

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (107)
  • HTML views (179)
  • Cited by (0)

Other articles
by authors

[Back to Top]