We give an alternative proof of the global existence result originally due to Hidano and Yokoyama for the Cauchy problem for a system of quasi-linear wave equations in three space dimensions satisfying the weak null condition. The feature of the new proof lies in that it never uses the Lorentz boost operator in the energy integral argument. The proof presented here has an advantage over the former one in that the assumption of compactness of the support of data can be eliminated and the amount of regularity of data can be lowered in a straightforward manner. A recent result of Zha for the scalar unknowns is also refined.
Citation: |
[1] |
S. Alinhac, The null condition for quasilinear wave equations in two space dimensions I, Invent. Math., 145 (2001), 597-618.
doi: 10.1007/s002220100165.![]() ![]() ![]() |
[2] |
S. Alinhac, Geometric Analysis of Hyperbolic Differential Equations: An Introduction, London Mathematical Society Lecture Note Series, 374. Cambridge University Press, Cambridge, 2010.
doi: 10.1017/CBO9781139107198.![]() ![]() ![]() |
[3] |
A. Friedman, Partial Differential Equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.
![]() ![]() |
[4] |
J. Ginibre and G. Velo, Conformal invariance and time decay for nonlinear wave equations. I, Ann. Inst. H. Poincaré Phys. Théor., 47 (1987), 221-261.
![]() ![]() |
[5] |
K. Hidano, Regularity and lifespan of small solutions to systems of quasi-linear wave equations with multiple speeds, I: almost global existence, in Harmonic Analysis and Nonlinear Partial Differential Equations (eds. H. Kubo and H. Takaoka), RIMS Kôkyûroku Bessatsu B65, Res. Inst. Math. Sci. (RIMS), Kyoto, (2017), 37–61.
![]() ![]() |
[6] |
K. Hidano, C. Wang and K. Yokoyama, On almost global existence and local well posedness for
some 3-D quasi-linear wave equations, Adv. Differential Equations, 17 (2012), 267-306.
![]() ![]() |
[7] |
K. Hidano and K. Yokoyama, Global existence for a system of quasi-linear wave equations in 3D satisfying the weak null condition, International Mathematics Research Notices. IMRN, to appear.,
doi: 10.1093/imrn/rny024.![]() ![]() |
[8] |
L. Hórmander, Lectures on Nonlinear Hyperbolic Differential Equations, Mathématiques & Applications (Berlin), 26. Springer-Verlag, Berlin, 1997.
![]() ![]() |
[9] |
F. John, Nonlinear Wave Equations, Formation of Singularities, Seventh Annual Pitcher Lectures delivered at Lehigh University, Bethlehem, Pennsylvania, April 1989. University Lecture Series, 2. American Mathematical Society, Providence, RI, 1990.
doi: 10.1090/ulect/002.![]() ![]() ![]() |
[10] |
F. Pusateri and J. Shatah, Space-time resonances and the null condition for first-order systems of wave equations, Comm. Pure Appl. Math., 66 (2013), 1495-1540.
doi: 10.1002/cpa.21461.![]() ![]() ![]() |
[11] |
M. Keel, H. F. Smith and C. D. Sogge, Almost global existence for quasilinear wave equations in
three space dimensions, J. Amer. Math. Soc., 17 (2004), 109-153.
doi: 10.1090/S0894-0347-03-00443-0.![]() ![]() ![]() |
[12] |
S. Klainerman, Remarks on the global Sobolev inequalities in the Minkowski space ${\mathbb R}^{n+1}$, Comm. Pure Appl. Math., 40 (1987), 111-117.
doi: 10.1002/cpa.3160400105.![]() ![]() ![]() |
[13] |
S. Klainerman and T. C. Sideris, On almost global existence for nonrelativistic wave
equations in 3D, Comm. Pure Appl. Math., 49 (1996), 307-321.
doi: 10.1002/(SICI)1097-0312(199603)49:3<307::AID-CPA4>3.0.CO;2-H.![]() ![]() ![]() |
[14] |
H. Lindblad and I. Rodnianski, The weak null condition for Einstein's equations, C. R. Math. Acad. Sci. Paris, 336 (2003), 901-906.
doi: 10.1016/S1631-073X(03)00231-0.![]() ![]() ![]() |
[15] |
J. Metcalfe, M. Nakamura and C. D. Sogge, Global existence of quasilinear, nonrelativistic wave equations satisfying the null condition, Japan. J. Math. (N.S.), 31 (2005), 391-472.
doi: 10.4099/math1924.31.391.![]() ![]() ![]() |
[16] |
J. Metcalfe and C. D. Sogge, Hyperbolic trapped rays and global existence of
quasilinear wave equations, Invent. Math., 159 (2005), 75-117.
doi: 10.1007/s00222-004-0383-2.![]() ![]() ![]() |
[17] |
J. Metcalfe and C. D. Sogge, Long-time existence of quasilinear wave equations exterior to
star-shaped obstacles via energy methods, SIAM J. Math. Anal., 38 (2006), 188-209.
doi: 10.1137/050627149.![]() ![]() ![]() |
[18] |
R. Racke, Lectures on Nonlinear Evolution Equations. Initial Value Problems, Aspects of Mathematics, E19. Friedr. Vieweg & Sohn, Braunschweig, 1992.
doi: 10.1007/978-3-663-10629-6.![]() ![]() ![]() |
[19] |
Y. Shibata and Y. Tsutsumi, On a global existence theorem of
small amplitude solutions for nonlinear wave equations in
an exterior domain, Math. Z., 191 (1986), 165-199.
doi: 10.1007/BF01164023.![]() ![]() ![]() |
[20] |
T. C. Sideris, Nonresonance and global existence of prestressed nonlinear elastic waves, Ann. of Math. (2), 151 (2000), 849–874.
doi: 10.2307/121050.![]() ![]() ![]() |
[21] |
T. C. Sideris and S. -Y. Tu, Global existence for systems of nonlinear wave equations in 3D with multiple speeds, SIAM J. Math. Anal., 33 (2001), 477-488.
doi: 10.1137/S0036141000378966.![]() ![]() ![]() |
[22] |
C. D. Sogge, Global existence for nonlinear wave equations with multiple speeds, in Harmonic Analysis at Mount Holyoke (South Hadley, MA, 2001. eds. W. Beckner, A. Nagel, A. Seeger and H.F. Smith), 353–366, Contemp. Math., 320, Amer. Math. Soc., Providence, RI, 2003.
doi: 10.1090/conm/320.![]() ![]() ![]() |
[23] |
J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation. With an appendix by Igor Rodnianski, Int. Math. Res. Not., 2005, 187–231.
doi: 10.1155/IMRN.2005.187.![]() ![]() ![]() |
[24] |
K. Yokoyama, Global existence of classical solutions to systems
of wave equations
with critical nonlinearity in three space dimensions, J. Math. Soc. Japan, 52 (2000), 609-632.
doi: 10.2969/jmsj/05230609.![]() ![]() ![]() |
[25] |
D. Zha, Some remarks on quasilinear wave equations with null condition in 3-D, Math. Methods Appl. Sci., 39 (2016), 4484-4495.
doi: 10.1002/mma.3876.![]() ![]() ![]() |