We study the Boltzmann equation near a global Maxwellian. We prove the global existence of a unique mild solution with initial data which belong to the $ L^r_v L^\infty_x $ spaces where $ r \in (1,\infty] $ by using the excess conservation laws and entropy inequality introduced in [
Citation: |
[1] |
R. Duan, F. Huang, Y. Wang and T. Yang, Global well-posedness of the Boltzmann equation with large Amplitude initial data, Arch. Rational Mech. Anal., 225 (2017), 375-424.
doi: 10.1007/s00205-017-1107-2.![]() ![]() ![]() |
[2] |
Robert T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
doi: 10.1137/1.9781611971477.![]() ![]() ![]() |
[3] |
Yan Guo, The Vlasov-Poisson-Boltzmann system near Maxwellians, Comm. Pure Appl. Math., Vol. LV (2002), 1104-1135.
doi: 10.1002/cpa.10040.![]() ![]() ![]() |
[4] |
Yan Guo, Decay and continuity of Boltzmann equation in bounded domains, Arch. Rational Mech. Anal., 197 (2010), 713-809.
doi: 10.1007/s00205-009-0285-y.![]() ![]() ![]() |
[5] |
Yan Guo, Bounded solutions for the Boltzmann equation, Quart. Appl. Math., LXVIII (2010), 143-148.
doi: 10.1090/S0033-569X-09-01180-4.![]() ![]() ![]() |
[6] |
M. Strain Robert and Keya Zhu, Large-time decay of the soft potential relativistic Boltzmann equation in $\mathbb{R}^3_x$, Kinetic and Related Models, 5 (2012), 383-415.
doi: 10.3934/krm.2012.5.383.![]() ![]() ![]() |
[7] |
S. Ukai and T. Yang, The Boltzmann equation in the space $L^2 \cap L^\infty_\beta$: Global and time-periodic solutions, Analysis and Applications, 4 (2006), 263-310.
doi: 10.1142/S0219530506000784.![]() ![]() ![]() |