July  2019, 18(4): 1783-1826. doi: 10.3934/cpaa.2019084

Existence and regularity of solutions for an evolution model of perfectly plastic plates

1. 

Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy

2. 

Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy

3. 

Dipartimento di Matematica Guido Castelnuovo, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy

Received  June 2018 Revised  November 2018 Published  January 2019

We continue the study of a dynamic evolution model for perfectly plastic plates, recently derived in [19] from three-dimensional Prandtl-Reuss plasticity. We extend the previous existence result by introducing non-zero external forces in the model, and we discuss the regularity of the solutions thus obtained. In particular, we show that the first derivatives with respect to space of the stress tensor are locally square integrable.

Citation: P. Gidoni, G. B. Maggiani, R. Scala. Existence and regularity of solutions for an evolution model of perfectly plastic plates. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1783-1826. doi: 10.3934/cpaa.2019084
References:
[1]

H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.  Google Scholar

[2]

J. F. Babadjian and M. G. Mora, Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion, Journal of Differential Equations, 264 (2018), 5109-5151.  doi: 10.1016/j.jde.2017.12.034.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.  Google Scholar

[4]

A. Bensoussan and J. Frehse, Asymptotic behaviour of the time-dependent Norton Hoff law in plasticity theory and $H^1$ regularity, Comment. Math. Univ. Carolinae, 37 (1996), 285-304.   Google Scholar

[5]

H. Brezis, Opérateurs maximaux monotones et semi-groupes de constractions dans les espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[6]

P. Ciarlet, Mathematical Elasticity. Vol II. Theory of Plates, Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997.  Google Scholar

[7]

G. Dal MasoA. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.  doi: 10.1007/s00205-005-0407-0.  Google Scholar

[8]

E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by $\Gamma$-convergence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 615-660.  doi: 10.1016/j.anihpc.2012.11.001.  Google Scholar

[9]

E. Davoli and M. G. Mora, Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calc. Var. Partial Differential Equations, 54 (2015), 2581-2614.  doi: 10.1007/s00526-015-0876-4.  Google Scholar

[10]

F. Demengel, Fonctions à hessien borné, Ann. Inst. Fourier (Grénoble), 34 (1984), 155-190.  Google Scholar

[11]

A. Demyanov, Regularity of stresses in Prandtl-Reuss plasticity, Calc. Var. Partial Differential Equations, 34 (2009), 23-72.  doi: 10.1007/s00526-008-0174-5.  Google Scholar

[12]

A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅰ. Existence of a weak solution, Math. Models Methods Appl. Sci., 19 (2009), 229-256.  doi: 10.1142/S0218202509003413.  Google Scholar

[13]

A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅱ. Regularity of bending moments, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2137-2163.  doi: 10.1016/j.anihpc.2009.01.006.  Google Scholar

[14]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math., vol. 28, SIAM, Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.  Google Scholar

[15]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[16]

R. V. Kohn and R. Temam, Dual spaces of stresses and strains, with application to Hencky plasticity, Appl. Math. Optim., 10 (1983), 1-35.  doi: 10.1007/BF01448377.  Google Scholar

[17]

J.Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990. Google Scholar

[18]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[19]

G. B. Maggiani and M. G. Mora, A dynamic evolution model for perfectly plastic plates, Math. Models Methods Appl. Sci., 26 (2016), 1825-1864.  doi: 10.1142/S0218202516500469.  Google Scholar

[20]

A. Mielke and T. Roubíček, Rate-independent Systems. Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[21]

R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 215-236.  Google Scholar

[22]

P. M. Suquet, Sur le équations de la plasticité: existence et regularité des solutions, J. Mécanique, 20 (1981), 3-39.  Google Scholar

[23]

R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985.  Google Scholar

show all references

References:
[1]

H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.  Google Scholar

[2]

J. F. Babadjian and M. G. Mora, Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion, Journal of Differential Equations, 264 (2018), 5109-5151.  doi: 10.1016/j.jde.2017.12.034.  Google Scholar

[3]

V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.  Google Scholar

[4]

A. Bensoussan and J. Frehse, Asymptotic behaviour of the time-dependent Norton Hoff law in plasticity theory and $H^1$ regularity, Comment. Math. Univ. Carolinae, 37 (1996), 285-304.   Google Scholar

[5]

H. Brezis, Opérateurs maximaux monotones et semi-groupes de constractions dans les espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973.  Google Scholar

[6]

P. Ciarlet, Mathematical Elasticity. Vol II. Theory of Plates, Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997.  Google Scholar

[7]

G. Dal MasoA. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.  doi: 10.1007/s00205-005-0407-0.  Google Scholar

[8]

E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by $\Gamma$-convergence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 615-660.  doi: 10.1016/j.anihpc.2012.11.001.  Google Scholar

[9]

E. Davoli and M. G. Mora, Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calc. Var. Partial Differential Equations, 54 (2015), 2581-2614.  doi: 10.1007/s00526-015-0876-4.  Google Scholar

[10]

F. Demengel, Fonctions à hessien borné, Ann. Inst. Fourier (Grénoble), 34 (1984), 155-190.  Google Scholar

[11]

A. Demyanov, Regularity of stresses in Prandtl-Reuss plasticity, Calc. Var. Partial Differential Equations, 34 (2009), 23-72.  doi: 10.1007/s00526-008-0174-5.  Google Scholar

[12]

A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅰ. Existence of a weak solution, Math. Models Methods Appl. Sci., 19 (2009), 229-256.  doi: 10.1142/S0218202509003413.  Google Scholar

[13]

A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅱ. Regularity of bending moments, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2137-2163.  doi: 10.1016/j.anihpc.2009.01.006.  Google Scholar

[14]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math., vol. 28, SIAM, Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.  Google Scholar

[15]

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011. doi: 10.1007/978-0-387-09620-9.  Google Scholar

[16]

R. V. Kohn and R. Temam, Dual spaces of stresses and strains, with application to Hencky plasticity, Appl. Math. Optim., 10 (1983), 1-35.  doi: 10.1007/BF01448377.  Google Scholar

[17]

J.Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990. Google Scholar

[18]

A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.  Google Scholar

[19]

G. B. Maggiani and M. G. Mora, A dynamic evolution model for perfectly plastic plates, Math. Models Methods Appl. Sci., 26 (2016), 1825-1864.  doi: 10.1142/S0218202516500469.  Google Scholar

[20]

A. Mielke and T. Roubíček, Rate-independent Systems. Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.  Google Scholar

[21]

R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 215-236.  Google Scholar

[22]

P. M. Suquet, Sur le équations de la plasticité: existence et regularité des solutions, J. Mécanique, 20 (1981), 3-39.  Google Scholar

[23]

R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985.  Google Scholar

[1]

Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193

[2]

Francesco Solombrino. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1189-1217. doi: 10.3934/dcds.2010.27.1189

[3]

G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks & Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567

[4]

Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205

[5]

Gianni Dal Maso, Francesco Solombrino. Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks & Heterogeneous Media, 2010, 5 (1) : 97-132. doi: 10.3934/nhm.2010.5.97

[6]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[7]

Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems & Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43

[8]

Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887

[9]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[10]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019227

[11]

Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190

[12]

M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure & Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557

[13]

Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002

[14]

Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43

[15]

Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure & Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5

[16]

Emile Franc Doungmo Goufo. Bounded perturbation for evolution equations with a parameter & application to population dynamics. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020177

[17]

Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439

[18]

Adam M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. Discrete & Continuous Dynamical Systems - B, 2008, 10 (1) : 221-238. doi: 10.3934/dcdsb.2008.10.221

[19]

Alessandro Giacomini. On the energetic formulation of the Gurtin and Anand model in strain gradient plasticity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 527-552. doi: 10.3934/dcdsb.2012.17.527

[20]

Lassi Roininen, Markku S. Lehtinen. Perfect pulse-compression coding via ARMA algorithms and unimodular transfer functions. Inverse Problems & Imaging, 2013, 7 (2) : 649-661. doi: 10.3934/ipi.2013.7.649

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (57)
  • HTML views (133)
  • Cited by (0)

Other articles
by authors

[Back to Top]