\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Existence and regularity of solutions for an evolution model of perfectly plastic plates

Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We continue the study of a dynamic evolution model for perfectly plastic plates, recently derived in [19] from three-dimensional Prandtl-Reuss plasticity. We extend the previous existence result by introducing non-zero external forces in the model, and we discuss the regularity of the solutions thus obtained. In particular, we show that the first derivatives with respect to space of the stress tensor are locally square integrable.

    Mathematics Subject Classification: 74C05, 74K20, 49J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984.
    [2] J. F. Babadjian and M. G. Mora, Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion, Journal of Differential Equations, 264 (2018), 5109-5151.  doi: 10.1016/j.jde.2017.12.034.
    [3] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976.
    [4] A. Bensoussan and J. Frehse, Asymptotic behaviour of the time-dependent Norton Hoff law in plasticity theory and $H^1$ regularity, Comment. Math. Univ. Carolinae, 37 (1996), 285-304. 
    [5] H. Brezis, Opérateurs maximaux monotones et semi-groupes de constractions dans les espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973.
    [6] P. Ciarlet, Mathematical Elasticity. Vol II. Theory of Plates, Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997.
    [7] G. Dal MasoA. DeSimone and M. G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.  doi: 10.1007/s00205-005-0407-0.
    [8] E. Davoli and M. G. Mora, A quasistatic evolution model for perfectly plastic plates derived by $\Gamma$-convergence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 615-660.  doi: 10.1016/j.anihpc.2012.11.001.
    [9] E. Davoli and M. G. Mora, Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calc. Var. Partial Differential Equations, 54 (2015), 2581-2614.  doi: 10.1007/s00526-015-0876-4.
    [10] F. Demengel, Fonctions à hessien borné, Ann. Inst. Fourier (Grénoble), 34 (1984), 155-190.
    [11] A. Demyanov, Regularity of stresses in Prandtl-Reuss plasticity, Calc. Var. Partial Differential Equations, 34 (2009), 23-72.  doi: 10.1007/s00526-008-0174-5.
    [12] A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅰ. Existence of a weak solution, Math. Models Methods Appl. Sci., 19 (2009), 229-256.  doi: 10.1142/S0218202509003413.
    [13] A. Demyanov, Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅱ. Regularity of bending moments, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2137-2163.  doi: 10.1016/j.anihpc.2009.01.006.
    [14] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math., vol. 28, SIAM, Philadelphia, PA, 1999. doi: 10.1137/1.9781611971088.
    [15] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011. doi: 10.1007/978-0-387-09620-9.
    [16] R. V. Kohn and R. Temam, Dual spaces of stresses and strains, with application to Hencky plasticity, Appl. Math. Optim., 10 (1983), 1-35.  doi: 10.1007/BF01448377.
    [17] J.Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990.
    [18] A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.  doi: 10.1007/s00526-004-0267-8.
    [19] G. B. Maggiani and M. G. Mora, A dynamic evolution model for perfectly plastic plates, Math. Models Methods Appl. Sci., 26 (2016), 1825-1864.  doi: 10.1142/S0218202516500469.
    [20] A. Mielke and T. Roubíček, Rate-independent Systems. Theory and Application, Springer, New York, 2015. doi: 10.1007/978-1-4939-2706-7.
    [21] R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 215-236.
    [22] P. M. Suquet, Sur le équations de la plasticité: existence et regularité des solutions, J. Mécanique, 20 (1981), 3-39.
    [23] R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985.
  • 加载中
SHARE

Article Metrics

HTML views(1744) PDF downloads(232) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return