-
Previous Article
Second order non-autonomous lattice systems and their uniform attractors
- CPAA Home
- This Issue
-
Next Article
Global existence for the Boltzmann equation in $ L^r_v L^\infty_t L^\infty_x $ spaces
Existence and regularity of solutions for an evolution model of perfectly plastic plates
1. | Dipartimento di Matematica, Università degli Studi di Padova, Via Trieste 63, 35121 Padova, Italy |
2. | Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy |
3. | Dipartimento di Matematica Guido Castelnuovo, Università degli Studi di Roma "La Sapienza", Piazzale Aldo Moro 5, 00185, Roma, Italy |
We continue the study of a dynamic evolution model for perfectly plastic plates, recently derived in [
References:
[1] |
H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984. |
[2] |
J. F. Babadjian and M. G. Mora,
Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion, Journal of Differential Equations, 264 (2018), 5109-5151.
doi: 10.1016/j.jde.2017.12.034. |
[3] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. |
[4] |
A. Bensoussan and J. Frehse,
Asymptotic behaviour of the time-dependent Norton Hoff law in plasticity theory and $H^1$ regularity, Comment. Math. Univ. Carolinae, 37 (1996), 285-304.
|
[5] |
H. Brezis, Opérateurs maximaux monotones et semi-groupes de constractions dans les espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973. |
[6] |
P. Ciarlet, Mathematical Elasticity. Vol II. Theory of Plates, Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997. |
[7] |
G. Dal Maso, A. DeSimone and M. G. Mora,
Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.
doi: 10.1007/s00205-005-0407-0. |
[8] |
E. Davoli and M. G. Mora,
A quasistatic evolution model for perfectly plastic plates derived by $\Gamma$-convergence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 615-660.
doi: 10.1016/j.anihpc.2012.11.001. |
[9] |
E. Davoli and M. G. Mora,
Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calc. Var. Partial Differential Equations, 54 (2015), 2581-2614.
doi: 10.1007/s00526-015-0876-4. |
[10] |
F. Demengel, Fonctions à hessien borné, Ann. Inst. Fourier (Grénoble), 34 (1984), 155-190. |
[11] |
A. Demyanov,
Regularity of stresses in Prandtl-Reuss plasticity, Calc. Var. Partial Differential Equations, 34 (2009), 23-72.
doi: 10.1007/s00526-008-0174-5. |
[12] |
A. Demyanov,
Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅰ. Existence of a weak solution, Math. Models Methods Appl. Sci., 19 (2009), 229-256.
doi: 10.1142/S0218202509003413. |
[13] |
A. Demyanov,
Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅱ. Regularity of bending moments, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2137-2163.
doi: 10.1016/j.anihpc.2009.01.006. |
[14] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math., vol. 28, SIAM, Philadelphia, PA, 1999.
doi: 10.1137/1.9781611971088. |
[15] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011.
doi: 10.1007/978-0-387-09620-9. |
[16] |
R. V. Kohn and R. Temam,
Dual spaces of stresses and strains, with application to Hencky plasticity, Appl. Math. Optim., 10 (1983), 1-35.
doi: 10.1007/BF01448377. |
[17] |
J.Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990. |
[18] |
A. Mainik and A. Mielke,
Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.
doi: 10.1007/s00526-004-0267-8. |
[19] |
G. B. Maggiani and M. G. Mora,
A dynamic evolution model for perfectly plastic plates, Math. Models Methods Appl. Sci., 26 (2016), 1825-1864.
doi: 10.1142/S0218202516500469. |
[20] |
A. Mielke and T. Roubíček, Rate-independent Systems. Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[21] |
R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 215-236. |
[22] |
P. M. Suquet, Sur le équations de la plasticité: existence et regularité des solutions, J. Mécanique, 20 (1981), 3-39. |
[23] |
R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985. |
show all references
References:
[1] |
H. Attouch, Variational Convergence for Functions and Operators, Pitman, London, 1984. |
[2] |
J. F. Babadjian and M. G. Mora,
Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion, Journal of Differential Equations, 264 (2018), 5109-5151.
doi: 10.1016/j.jde.2017.12.034. |
[3] |
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. |
[4] |
A. Bensoussan and J. Frehse,
Asymptotic behaviour of the time-dependent Norton Hoff law in plasticity theory and $H^1$ regularity, Comment. Math. Univ. Carolinae, 37 (1996), 285-304.
|
[5] |
H. Brezis, Opérateurs maximaux monotones et semi-groupes de constractions dans les espaces de Hilbert, American Elsevier Publishing Co., Inc., New York, 1973. |
[6] |
P. Ciarlet, Mathematical Elasticity. Vol II. Theory of Plates, Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, 1997. |
[7] |
G. Dal Maso, A. DeSimone and M. G. Mora,
Quasistatic evolution problems for linearly elastic-perfectly plastic materials, Arch. Ration. Mech. Anal., 180 (2006), 237-291.
doi: 10.1007/s00205-005-0407-0. |
[8] |
E. Davoli and M. G. Mora,
A quasistatic evolution model for perfectly plastic plates derived by $\Gamma$-convergence, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 615-660.
doi: 10.1016/j.anihpc.2012.11.001. |
[9] |
E. Davoli and M. G. Mora,
Stress regularity for a new quasistatic evolution model of perfectly plastic plates, Calc. Var. Partial Differential Equations, 54 (2015), 2581-2614.
doi: 10.1007/s00526-015-0876-4. |
[10] |
F. Demengel, Fonctions à hessien borné, Ann. Inst. Fourier (Grénoble), 34 (1984), 155-190. |
[11] |
A. Demyanov,
Regularity of stresses in Prandtl-Reuss plasticity, Calc. Var. Partial Differential Equations, 34 (2009), 23-72.
doi: 10.1007/s00526-008-0174-5. |
[12] |
A. Demyanov,
Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅰ. Existence of a weak solution, Math. Models Methods Appl. Sci., 19 (2009), 229-256.
doi: 10.1142/S0218202509003413. |
[13] |
A. Demyanov,
Quasistatic evolution in the theory of perfectly elasto-plastic plates. Ⅱ. Regularity of bending moments, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 2137-2163.
doi: 10.1016/j.anihpc.2009.01.006. |
[14] |
I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Classics Appl. Math., vol. 28, SIAM, Philadelphia, PA, 1999.
doi: 10.1137/1.9781611971088. |
[15] |
G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011.
doi: 10.1007/978-0-387-09620-9. |
[16] |
R. V. Kohn and R. Temam,
Dual spaces of stresses and strains, with application to Hencky plasticity, Appl. Math. Optim., 10 (1983), 1-35.
doi: 10.1007/BF01448377. |
[17] |
J.Lubliner, Plasticity Theory, Macmillan Publishing Company, New York, 1990. |
[18] |
A. Mainik and A. Mielke,
Existence results for energetic models for rate-independent systems, Calc. Var. Partial Differential Equations, 22 (2005), 73-99.
doi: 10.1007/s00526-004-0267-8. |
[19] |
G. B. Maggiani and M. G. Mora,
A dynamic evolution model for perfectly plastic plates, Math. Models Methods Appl. Sci., 26 (2016), 1825-1864.
doi: 10.1142/S0218202516500469. |
[20] |
A. Mielke and T. Roubíček, Rate-independent Systems. Theory and Application, Springer, New York, 2015.
doi: 10.1007/978-1-4939-2706-7. |
[21] |
R. T. Rockafellar, Convex Integral Functionals and Duality, in Contributions to Nonlinear Functional Analysis, Academic Press, (1971), 215-236. |
[22] |
P. M. Suquet, Sur le équations de la plasticité: existence et regularité des solutions, J. Mécanique, 20 (1981), 3-39. |
[23] |
R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris, 1985. |
[1] |
Tomáš Roubíček. Thermodynamics of perfect plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 193-214. doi: 10.3934/dcdss.2013.6.193 |
[2] |
Francesco Solombrino. Quasistatic evolution for plasticity with softening: The spatially homogeneous case. Discrete and Continuous Dynamical Systems, 2010, 27 (3) : 1189-1217. doi: 10.3934/dcds.2010.27.1189 |
[3] |
G. Dal Maso, Antonio DeSimone, M. G. Mora, M. Morini. Globally stable quasistatic evolution in plasticity with softening. Networks and Heterogeneous Media, 2008, 3 (3) : 567-614. doi: 10.3934/nhm.2008.3.567 |
[4] |
Christian Meyer, Stephan Walther. Optimal control of perfect plasticity part I: Stress tracking. Mathematical Control and Related Fields, 2022, 12 (2) : 275-301. doi: 10.3934/mcrf.2021022 |
[5] |
Sébastien Gouëzel. An interval map with a spectral gap on Lipschitz functions, but not on bounded variation functions. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1205-1208. doi: 10.3934/dcds.2009.24.1205 |
[6] |
Gianni Dal Maso, Francesco Solombrino. Quasistatic evolution for Cam-Clay plasticity: The spatially homogeneous case. Networks and Heterogeneous Media, 2010, 5 (1) : 97-132. doi: 10.3934/nhm.2010.5.97 |
[7] |
Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39 |
[8] |
Yunho Kim, Luminita A. Vese. Image recovery using functions of bounded variation and Sobolev spaces of negative differentiability. Inverse Problems and Imaging, 2009, 3 (1) : 43-68. doi: 10.3934/ipi.2009.3.43 |
[9] |
Ken Abe. Some uniqueness result of the Stokes flow in a half space in a space of bounded functions. Discrete and Continuous Dynamical Systems - S, 2014, 7 (5) : 887-900. doi: 10.3934/dcdss.2014.7.887 |
[10] |
Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379 |
[11] |
Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2271-2292. doi: 10.3934/dcdsb.2019227 |
[12] |
Harun Karsli, Purshottam Narain Agrawal. Rate of convergence of Stancu type modified $ q $-Gamma operators for functions with derivatives of bounded variation. Mathematical Foundations of Computing, 2022 doi: 10.3934/mfc.2022002 |
[13] |
Wei Liu, Pavel Krejčí, Guoju Ye. Continuity properties of Prandtl-Ishlinskii operators in the space of regulated functions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3783-3795. doi: 10.3934/dcdsb.2017190 |
[14] |
M. Ben Ayed, K. El Mehdi, M. Hammami. Nonexistence of bounded energy solutions for a fourth order equation on thin annuli. Communications on Pure and Applied Analysis, 2004, 3 (4) : 557-580. doi: 10.3934/cpaa.2004.3.557 |
[15] |
Yang Yang, Xiaohu Tang, Guang Gong. New almost perfect, odd perfect, and perfect sequences from difference balanced functions with d-form property. Advances in Mathematics of Communications, 2017, 11 (1) : 67-76. doi: 10.3934/amc.2017002 |
[16] |
Gilles A. Francfort, Alessandro Giacomini, Alessandro Musesti. On the Fleck and Willis homogenization procedure in strain gradient plasticity. Discrete and Continuous Dynamical Systems - S, 2013, 6 (1) : 43-62. doi: 10.3934/dcdss.2013.6.43 |
[17] |
Emile Franc Doungmo Goufo. Bounded perturbation for evolution equations with a parameter & application to population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2137-2150. doi: 10.3934/dcdss.2020177 |
[18] |
Alessandro Giacomini. On the energetic formulation of the Gurtin and Anand model in strain gradient plasticity. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 527-552. doi: 10.3934/dcdsb.2012.17.527 |
[19] |
Wolfgang Arendt, Patrick J. Rabier. Linear evolution operators on spaces of periodic functions. Communications on Pure and Applied Analysis, 2009, 8 (1) : 5-36. doi: 10.3934/cpaa.2009.8.5 |
[20] |
Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439 |
2021 Impact Factor: 1.273
Tools
Metrics
Other articles
by authors
[Back to Top]