July  2019, 18(4): 1827-1846. doi: 10.3934/cpaa.2019085

Second order non-autonomous lattice systems and their uniform attractors

Department of Mathematics, The University of Jordan, Amman 11942 Jordan

Received  July 2018 Revised  November 2018 Published  January 2019

The existence of the uniform global attractor for a second order non-autonomous lattice dynamical system (LDS) with almost periodic symbols has been carefully studied. Considering the nonlinear operators $ \left( f_{1i}\left( \overset{.}{u}_{j}\mid j\in I_{iq_{1}}\right) \right) _{i\in \mathbb{Z} ^{n}} $ and $ \left( f_{2i}\left( u_{j}\mid j\in I_{iq_{2}}\right) \right) _{i\in \mathbb{Z} ^{n}} $ of this LDS, up to our knowledge it is the first time to investigate the existence of uniform global attractors for such second order LDSs. In fact there are some previous studies for first order autonomous and non-autonomous LDSs with similar nonlinear parts, cf. [3, 24]. Moreover, the LDS under consideration covers a wide range of second order LDSs. In fact, for specific choices of the nonlinear functions $ f_{1i} $ and $ f_{2i} $ we get the autonomous and non-autonomous second order systems given by [1, 25, 26].

Citation: Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085
References:
[1]

A. Y. Abdallah, Upper semicontinuity of the attractor for a second order lattice dynamical system, Discrete. Contin. Dyn. Syst. Ser. B., 5 (2005), 899-916.  doi: 10.3934/dcdsb.2005.5.899.  Google Scholar

[2]

A. Y. Abdallah, Long-time behavior for second order lattice dynamical systems, Acta Appl. Math., 106 (2009), 47-59.  doi: 10.1007/s10440-008-9281-8.  Google Scholar

[3]

A. Y. Abdallah, Uniform global attractors for first order non-autonomous lattice dynamical systems, Proc. Amer. Math. Soc., 138 (2010), 3219-3228.  doi: 10.1090/S0002-9939-10-10440-7.  Google Scholar

[4]

A. Y. Abdallah, Attractors for second order lattice systems with almost periodic symbols in weighted spaces, J. Math. Anal. Appl., 442 (2016), 761-781.  doi: 10.1016/j.jmaa.2016.04.071.  Google Scholar

[5]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[6]

V. Bellrti and V. Pata, Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Disc. Cont. Dyn. Sys., 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[7]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Diff. Eqs. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[8]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Diff. Eqs., 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[9]

H. Chate and M. Courbage (Eds.), Lattice systems, Phys. D, 103 (1997), 1-612. doi: 10.1016/S0167-2789(96)00256-4.  Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous dynamical systems and their attractors, Appendix in the book Asymptotic Behavior of Solutions of Evolutionary Equaions (M. I. Vishik ed.), Cambridge University Press, 1992. Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous evolution equations and their attractor, Russ. J. Math. Physics, 1 (1993), 165–190.  Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.  Google Scholar

[13]

S. N. Chow, Lattice Dynamical Systems, Dynamical System, Lecture Notes in Mathematics (Springer, Berlin), 2003, pp. 1-102. doi: 10.1007/978-3-540-45204-1_1.  Google Scholar

[14]

J. HuangX. Han and S. Zhou, Uniform attractors for non-autonomous Klein-Gordon-Schródinger lattice systems, Appl. Math. Mech. Engl. Ed., 30 (2009), 1597-1607.  doi: 10.1007/s10483-009-1211-z.  Google Scholar

[15]

X. Jia, C. Zhao and X. Yang, Global attractor and Kolmogorov entropy of three component reversible Gray–Scott model on infinite lattices, Appl. Math. Comp., (2012). doi: 10.1016/j.amc.2012.03.036.  Google Scholar

[16]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982.  Google Scholar

[17]

H. Li and L. Sun, Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrödinger lattice system, Adv. Difference Equ., 2014, 2014: 300, 16 pp. doi: 10.1186/1687-1847-2014-300.  Google Scholar

[18]

J. OliveiraJ. Pereira and M. Perla, Attractors for second order periodic lattices with nonlinear damping, J. Diff. Eqs. Appl., 14 (2008), 899-921.  doi: 10.1080/10236190701859211.  Google Scholar

[19]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Appl. Math. Sci. 68. Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[20]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[21]

X. YangC. Zhao and J. Cao, Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations, Appl. Math. Comp., 219 (2013), 8508-8524.  doi: 10.1016/j.amc.2013.01.053.  Google Scholar

[22]

C. Zhao, G. Xue and G. Lukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B, 23 (2018), 4021-4044. Google Scholar

[23]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Disc. Cont. Dyn. Sys., 21 (2008), 643-663.  doi: 10.3934/dcds.2008.21.643.  Google Scholar

[24]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[25]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Diff. Eqs., 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[26]

S. Zhou and M. Zhao, Uniform exponential attractor for second order lattice system with quasi-periodic external forces in weighted space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 9 pp. doi: 10.1142/S0218127414500060.  Google Scholar

show all references

References:
[1]

A. Y. Abdallah, Upper semicontinuity of the attractor for a second order lattice dynamical system, Discrete. Contin. Dyn. Syst. Ser. B., 5 (2005), 899-916.  doi: 10.3934/dcdsb.2005.5.899.  Google Scholar

[2]

A. Y. Abdallah, Long-time behavior for second order lattice dynamical systems, Acta Appl. Math., 106 (2009), 47-59.  doi: 10.1007/s10440-008-9281-8.  Google Scholar

[3]

A. Y. Abdallah, Uniform global attractors for first order non-autonomous lattice dynamical systems, Proc. Amer. Math. Soc., 138 (2010), 3219-3228.  doi: 10.1090/S0002-9939-10-10440-7.  Google Scholar

[4]

A. Y. Abdallah, Attractors for second order lattice systems with almost periodic symbols in weighted spaces, J. Math. Anal. Appl., 442 (2016), 761-781.  doi: 10.1016/j.jmaa.2016.04.071.  Google Scholar

[5]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[6]

V. Bellrti and V. Pata, Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Disc. Cont. Dyn. Sys., 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[7]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Diff. Eqs. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[8]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Diff. Eqs., 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[9]

H. Chate and M. Courbage (Eds.), Lattice systems, Phys. D, 103 (1997), 1-612. doi: 10.1016/S0167-2789(96)00256-4.  Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous dynamical systems and their attractors, Appendix in the book Asymptotic Behavior of Solutions of Evolutionary Equaions (M. I. Vishik ed.), Cambridge University Press, 1992. Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous evolution equations and their attractor, Russ. J. Math. Physics, 1 (1993), 165–190.  Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.  Google Scholar

[13]

S. N. Chow, Lattice Dynamical Systems, Dynamical System, Lecture Notes in Mathematics (Springer, Berlin), 2003, pp. 1-102. doi: 10.1007/978-3-540-45204-1_1.  Google Scholar

[14]

J. HuangX. Han and S. Zhou, Uniform attractors for non-autonomous Klein-Gordon-Schródinger lattice systems, Appl. Math. Mech. Engl. Ed., 30 (2009), 1597-1607.  doi: 10.1007/s10483-009-1211-z.  Google Scholar

[15]

X. Jia, C. Zhao and X. Yang, Global attractor and Kolmogorov entropy of three component reversible Gray–Scott model on infinite lattices, Appl. Math. Comp., (2012). doi: 10.1016/j.amc.2012.03.036.  Google Scholar

[16]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982.  Google Scholar

[17]

H. Li and L. Sun, Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrödinger lattice system, Adv. Difference Equ., 2014, 2014: 300, 16 pp. doi: 10.1186/1687-1847-2014-300.  Google Scholar

[18]

J. OliveiraJ. Pereira and M. Perla, Attractors for second order periodic lattices with nonlinear damping, J. Diff. Eqs. Appl., 14 (2008), 899-921.  doi: 10.1080/10236190701859211.  Google Scholar

[19]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Appl. Math. Sci. 68. Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[20]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[21]

X. YangC. Zhao and J. Cao, Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations, Appl. Math. Comp., 219 (2013), 8508-8524.  doi: 10.1016/j.amc.2013.01.053.  Google Scholar

[22]

C. Zhao, G. Xue and G. Lukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B, 23 (2018), 4021-4044. Google Scholar

[23]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Disc. Cont. Dyn. Sys., 21 (2008), 643-663.  doi: 10.3934/dcds.2008.21.643.  Google Scholar

[24]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[25]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Diff. Eqs., 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[26]

S. Zhou and M. Zhao, Uniform exponential attractor for second order lattice system with quasi-periodic external forces in weighted space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 9 pp. doi: 10.1142/S0218127414500060.  Google Scholar

[1]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[2]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[3]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Haiyu Liu, Rongmin Zhu, Yuxian Geng. Gorenstein global dimensions relative to balanced pairs. Electronic Research Archive, 2020, 28 (4) : 1563-1571. doi: 10.3934/era.2020082

[6]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[7]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[8]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[9]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[10]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[11]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[12]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[13]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[16]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[17]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[18]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[19]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[20]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

2019 Impact Factor: 1.105

Metrics

  • PDF downloads (114)
  • HTML views (175)
  • Cited by (1)

Other articles
by authors

[Back to Top]