July  2019, 18(4): 1827-1846. doi: 10.3934/cpaa.2019085

Second order non-autonomous lattice systems and their uniform attractors

Department of Mathematics, The University of Jordan, Amman 11942 Jordan

Received  July 2018 Revised  November 2018 Published  January 2019

The existence of the uniform global attractor for a second order non-autonomous lattice dynamical system (LDS) with almost periodic symbols has been carefully studied. Considering the nonlinear operators $ \left( f_{1i}\left( \overset{.}{u}_{j}\mid j\in I_{iq_{1}}\right) \right) _{i\in \mathbb{Z} ^{n}} $ and $ \left( f_{2i}\left( u_{j}\mid j\in I_{iq_{2}}\right) \right) _{i\in \mathbb{Z} ^{n}} $ of this LDS, up to our knowledge it is the first time to investigate the existence of uniform global attractors for such second order LDSs. In fact there are some previous studies for first order autonomous and non-autonomous LDSs with similar nonlinear parts, cf. [3, 24]. Moreover, the LDS under consideration covers a wide range of second order LDSs. In fact, for specific choices of the nonlinear functions $ f_{1i} $ and $ f_{2i} $ we get the autonomous and non-autonomous second order systems given by [1, 25, 26].

Citation: Ahmed Y. Abdallah, Rania T. Wannan. Second order non-autonomous lattice systems and their uniform attractors. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1827-1846. doi: 10.3934/cpaa.2019085
References:
[1]

A. Y. Abdallah, Upper semicontinuity of the attractor for a second order lattice dynamical system, Discrete. Contin. Dyn. Syst. Ser. B., 5 (2005), 899-916.  doi: 10.3934/dcdsb.2005.5.899.  Google Scholar

[2]

A. Y. Abdallah, Long-time behavior for second order lattice dynamical systems, Acta Appl. Math., 106 (2009), 47-59.  doi: 10.1007/s10440-008-9281-8.  Google Scholar

[3]

A. Y. Abdallah, Uniform global attractors for first order non-autonomous lattice dynamical systems, Proc. Amer. Math. Soc., 138 (2010), 3219-3228.  doi: 10.1090/S0002-9939-10-10440-7.  Google Scholar

[4]

A. Y. Abdallah, Attractors for second order lattice systems with almost periodic symbols in weighted spaces, J. Math. Anal. Appl., 442 (2016), 761-781.  doi: 10.1016/j.jmaa.2016.04.071.  Google Scholar

[5]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[6]

V. Bellrti and V. Pata, Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Disc. Cont. Dyn. Sys., 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[7]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Diff. Eqs. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[8]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Diff. Eqs., 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[9]

H. Chate and M. Courbage (Eds.), Lattice systems, Phys. D, 103 (1997), 1-612. doi: 10.1016/S0167-2789(96)00256-4.  Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous dynamical systems and their attractors, Appendix in the book Asymptotic Behavior of Solutions of Evolutionary Equaions (M. I. Vishik ed.), Cambridge University Press, 1992. Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous evolution equations and their attractor, Russ. J. Math. Physics, 1 (1993), 165–190.  Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.  Google Scholar

[13]

S. N. Chow, Lattice Dynamical Systems, Dynamical System, Lecture Notes in Mathematics (Springer, Berlin), 2003, pp. 1-102. doi: 10.1007/978-3-540-45204-1_1.  Google Scholar

[14]

J. HuangX. Han and S. Zhou, Uniform attractors for non-autonomous Klein-Gordon-Schródinger lattice systems, Appl. Math. Mech. Engl. Ed., 30 (2009), 1597-1607.  doi: 10.1007/s10483-009-1211-z.  Google Scholar

[15]

X. Jia, C. Zhao and X. Yang, Global attractor and Kolmogorov entropy of three component reversible Gray–Scott model on infinite lattices, Appl. Math. Comp., (2012). doi: 10.1016/j.amc.2012.03.036.  Google Scholar

[16]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982.  Google Scholar

[17]

H. Li and L. Sun, Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrödinger lattice system, Adv. Difference Equ., 2014, 2014: 300, 16 pp. doi: 10.1186/1687-1847-2014-300.  Google Scholar

[18]

J. OliveiraJ. Pereira and M. Perla, Attractors for second order periodic lattices with nonlinear damping, J. Diff. Eqs. Appl., 14 (2008), 899-921.  doi: 10.1080/10236190701859211.  Google Scholar

[19]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Appl. Math. Sci. 68. Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[20]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[21]

X. YangC. Zhao and J. Cao, Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations, Appl. Math. Comp., 219 (2013), 8508-8524.  doi: 10.1016/j.amc.2013.01.053.  Google Scholar

[22]

C. Zhao, G. Xue and G. Lukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B, 23 (2018), 4021-4044. Google Scholar

[23]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Disc. Cont. Dyn. Sys., 21 (2008), 643-663.  doi: 10.3934/dcds.2008.21.643.  Google Scholar

[24]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[25]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Diff. Eqs., 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[26]

S. Zhou and M. Zhao, Uniform exponential attractor for second order lattice system with quasi-periodic external forces in weighted space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 9 pp. doi: 10.1142/S0218127414500060.  Google Scholar

show all references

References:
[1]

A. Y. Abdallah, Upper semicontinuity of the attractor for a second order lattice dynamical system, Discrete. Contin. Dyn. Syst. Ser. B., 5 (2005), 899-916.  doi: 10.3934/dcdsb.2005.5.899.  Google Scholar

[2]

A. Y. Abdallah, Long-time behavior for second order lattice dynamical systems, Acta Appl. Math., 106 (2009), 47-59.  doi: 10.1007/s10440-008-9281-8.  Google Scholar

[3]

A. Y. Abdallah, Uniform global attractors for first order non-autonomous lattice dynamical systems, Proc. Amer. Math. Soc., 138 (2010), 3219-3228.  doi: 10.1090/S0002-9939-10-10440-7.  Google Scholar

[4]

A. Y. Abdallah, Attractors for second order lattice systems with almost periodic symbols in weighted spaces, J. Math. Anal. Appl., 442 (2016), 761-781.  doi: 10.1016/j.jmaa.2016.04.071.  Google Scholar

[5]

P. W. BatesK. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153.  doi: 10.1142/S0218127401002031.  Google Scholar

[6]

V. Bellrti and V. Pata, Attractors for semilinear strongly damped wave equation on $\mathbb{R}^3$, Disc. Cont. Dyn. Sys., 7 (2001), 719-735.  doi: 10.3934/dcds.2001.7.719.  Google Scholar

[7]

T. CaraballoF. Morillas and J. Valero, Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Diff. Eqs. Appl., 17 (2011), 161-184.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[8]

T. CaraballoF. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Diff. Eqs., 253 (2012), 667-693.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[9]

H. Chate and M. Courbage (Eds.), Lattice systems, Phys. D, 103 (1997), 1-612. doi: 10.1016/S0167-2789(96)00256-4.  Google Scholar

[10]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous dynamical systems and their attractors, Appendix in the book Asymptotic Behavior of Solutions of Evolutionary Equaions (M. I. Vishik ed.), Cambridge University Press, 1992. Google Scholar

[11]

V. V. Chepyzhov and M. I. Vishik, Non-autonomous evolution equations and their attractor, Russ. J. Math. Physics, 1 (1993), 165–190.  Google Scholar

[12]

V. V. Chepyzhov and M. I. Vishik, Attractors of non-autonomous dynamical systems and their dimension, J. Math. Pures Appl., 73 (1994), 279-333.  Google Scholar

[13]

S. N. Chow, Lattice Dynamical Systems, Dynamical System, Lecture Notes in Mathematics (Springer, Berlin), 2003, pp. 1-102. doi: 10.1007/978-3-540-45204-1_1.  Google Scholar

[14]

J. HuangX. Han and S. Zhou, Uniform attractors for non-autonomous Klein-Gordon-Schródinger lattice systems, Appl. Math. Mech. Engl. Ed., 30 (2009), 1597-1607.  doi: 10.1007/s10483-009-1211-z.  Google Scholar

[15]

X. Jia, C. Zhao and X. Yang, Global attractor and Kolmogorov entropy of three component reversible Gray–Scott model on infinite lattices, Appl. Math. Comp., (2012). doi: 10.1016/j.amc.2012.03.036.  Google Scholar

[16]

B. M. Levitan and V. V. Zhikov, Almost Periodic Functions and Differential Equations, Cambridge Univ. Press, Cambridge, 1982.  Google Scholar

[17]

H. Li and L. Sun, Upper semicontinuity of attractors for small perturbations of Klein-Gordon-Schrödinger lattice system, Adv. Difference Equ., 2014, 2014: 300, 16 pp. doi: 10.1186/1687-1847-2014-300.  Google Scholar

[18]

J. OliveiraJ. Pereira and M. Perla, Attractors for second order periodic lattices with nonlinear damping, J. Diff. Eqs. Appl., 14 (2008), 899-921.  doi: 10.1080/10236190701859211.  Google Scholar

[19]

R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, 2nd edn. Appl. Math. Sci. 68. Springer, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[20]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[21]

X. YangC. Zhao and J. Cao, Dynamics of the discrete coupled nonlinear Schrödinger-Boussinesq equations, Appl. Math. Comp., 219 (2013), 8508-8524.  doi: 10.1016/j.amc.2013.01.053.  Google Scholar

[22]

C. Zhao, G. Xue and G. Lukaszewicz, Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations, Discrete Cont. Dyn. Syst.-B, 23 (2018), 4021-4044. Google Scholar

[23]

C. Zhao and S. Zhou, Compact uniform attractors for dissipative lattice dynamical systems with delays, Disc. Cont. Dyn. Sys., 21 (2008), 643-663.  doi: 10.3934/dcds.2008.21.643.  Google Scholar

[24]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[25]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Diff. Eqs., 200 (2004), 342-368.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[26]

S. Zhou and M. Zhao, Uniform exponential attractor for second order lattice system with quasi-periodic external forces in weighted space, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 24 (2014), 9 pp. doi: 10.1142/S0218127414500060.  Google Scholar

[1]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[2]

Shi-Liang Wu, Cheng-Hsiung Hsu. Entire solutions with merging fronts to a bistable periodic lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2329-2346. doi: 10.3934/dcds.2016.36.2329

[3]

Jong-Shenq Guo, Chang-Hong Wu. Front propagation for a two-dimensional periodic monostable lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 197-223. doi: 10.3934/dcds.2010.26.197

[4]

Messoud Efendiev, Etsushi Nakaguchi, Wolfgang L. Wendland. Uniform estimate of dimension of the global attractor for a semi-discretized chemotaxis-growth system. Conference Publications, 2007, 2007 (Special) : 334-343. doi: 10.3934/proc.2007.2007.334

[5]

P.E. Kloeden, Desheng Li, Chengkui Zhong. Uniform attractors of periodic and asymptotically periodic dynamical systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 213-232. doi: 10.3934/dcds.2005.12.213

[6]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[7]

Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete & Continuous Dynamical Systems - A, 2008, 21 (2) : 643-663. doi: 10.3934/dcds.2008.21.643

[8]

Ahmed Y. Abdallah. Attractors for first order lattice systems with almost periodic nonlinear part. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019218

[9]

Vladimir V. Chepyzhov, Monica Conti, Vittorino Pata. Totally dissipative dynamical processes and their uniform global attractors. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1989-2004. doi: 10.3934/cpaa.2014.13.1989

[10]

Tibor Krisztin. The unstable set of zero and the global attractor for delayed monotone positive feedback. Conference Publications, 2001, 2001 (Special) : 229-240. doi: 10.3934/proc.2001.2001.229

[11]

Sorin Micu, Ademir F. Pazoto. Almost periodic solutions for a weakly dissipated hybrid system. Mathematical Control & Related Fields, 2014, 4 (1) : 101-113. doi: 10.3934/mcrf.2014.4.101

[12]

Younghun Hong, Changhun Yang. Uniform Strichartz estimates on the lattice. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3239-3264. doi: 10.3934/dcds.2019134

[13]

Jörg Härterich, Matthias Wolfrum. Describing a class of global attractors via symbol sequences. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 531-554. doi: 10.3934/dcds.2005.12.531

[14]

Felipe García-Ramos, Brian Marcus. Mean sensitive, mean equicontinuous and almost periodic functions for dynamical systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 729-746. doi: 10.3934/dcds.2019030

[15]

Fanchao Kong, Juan J. Nieto. Almost periodic dynamical behaviors of the hematopoiesis model with mixed discontinuous harvesting terms. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5803-5830. doi: 10.3934/dcdsb.2019107

[16]

Fang-Di Dong, Wan-Tong Li, Li Zhang. Entire solutions in a two-dimensional nonlocal lattice dynamical system. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2517-2545. doi: 10.3934/cpaa.2018120

[17]

Jong-Shenq Guo, Ying-Chih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems - A, 2012, 32 (1) : 101-124. doi: 10.3934/dcds.2012.32.101

[18]

Chin-Chin Wu. Monotonicity and uniqueness of wave profiles for a three components lattice dynamical system. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2813-2827. doi: 10.3934/dcds.2017121

[19]

Caibin Zeng, Xiaofang Lin, Jianhua Huang, Qigui Yang. Pathwise solution to rough stochastic lattice dynamical system driven by fractional noise. Communications on Pure & Applied Analysis, 2020, 19 (2) : 811-834. doi: 10.3934/cpaa.2020038

[20]

Michael Zgurovsky, Mark Gluzman, Nataliia Gorban, Pavlo Kasyanov, Liliia Paliichuk, Olha Khomenko. Uniform global attractors for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (5) : 2053-2065. doi: 10.3934/dcdsb.2017120

2018 Impact Factor: 0.925

Metrics

  • PDF downloads (52)
  • HTML views (134)
  • Cited by (0)

Other articles
by authors

[Back to Top]